Page 119 - Distributed model predictive control for plant-wide systems
P. 119

Local Cost Optimization-based Distributed Model Predictive Control      93


             with
                            −1           T                   T    −1
                     W =[D (I − D )− A] Q(A − A S) + (A − A S) Q[D (I − D )− A]
                            1      E                              1      E
                                                                           T
                                                  T
                                T
                       + (A − A S) Q(A − A S) + (S − I) R(S − I) + R(S − I) + (S − I) R
             Then
                               ∗    2     ∗T         ∗             ∗   2
                            ‖Δu (k)‖ ≤ Δu (k)‖W‖Δu (k)= ‖W‖‖Δu (k)‖
                               M    W     M          M             M
                                       ‖W‖      ∗   2   ‖W‖   ∗
                                     ≤      ‖Δu (k)‖ =       J
                                          (F)   M   F      (F)
                                                         m
                                        m
             Here,    (F) is the minimal eigenvalue of F. From the above derivations, the performance rela-
                   m
             tionship between the communication failure free and communication failure can be expressed
             as
                                                [         ]
                                                            ∗
                                   ∗
                                             ∗
                             J dis  ≤ J +  ‖W‖  J = 1 +  ‖W‖  J =(1 +   )J ∗      (5.73)
                                          (F)           (F)
                                                      m
                                        m
             where    = ‖W‖/   (F) denotes the degrading magnitude of the performance index under the
                           m
             local communication failure.
                                                                 dis
               Inspection of (5.72) shows that ‖W‖ depends on G dis  and D , while G dis  and D dis  are
                                                                 E                E
             affected by the communication failure matrix T and T . So in the case of all existed com-
                                                    r     c
             munication failures, ‖W‖ can arrive at the maximal value, at this time, T D T = 0, G dis  =
                                                                        r  E  c
             0, D dis  = 0, A = A , S = I − D , and
                                     E
                            0
                E
                                           T
                              −1
                     W max  =[D (I − D )− A] Q[A − A (I − D )] + [A − A (I − D )] T
                                                                   0
                                                                         E
                                                   0
                                                         E
                                     E
                              1
                                 −1
                                                               T
                            × Q[D (I − D )− A]+[A − A (I − D )] Q[A − A (I − D )]
                                                                             E
                                                                       0
                                                      0
                                                            E
                                        E
                                 1
                               T
                                              T
                            − D RD − RD − D R
                               E   E     E    E
             Therefore, the upper bound of the performance deviation under the local communication fail-
             ure is
                                                  ‖W max ‖
                                                =
                                            max
                                                      (F)
                                                    m
             Theorem 5.4 The convergent condition of the distributed linear model predictive control sys-
             tem under the communication failure is |  (T D T)| < 1, where D , T , and T are the same
                                                   E
                                                                     r
                                                                  E
                                                 r
                                                                            c
             as defined before.
               Proof. The output prediction model of the ith agent under the communication failure at the
             time instant k can be described as
                                                   m
                                                  ∑     dis  dis
                                           dis
                        dis
                        ̃ y  = ̃ y  (k)+ A Δu  (k)+   G Δu    (k)(i = 1, … , m)   (5.74)
                        i,PM   i,P0    ii  i,M          ij  j,M
                                                 j=1, j≠i
               The local performance index for the ith agent can be expressed as
                         min J dis  = ‖   (k)− ̃ y dis  (k)‖ 2  + ‖Δu dis  (k)‖ 2  (i = 1, … , m)  (5.75)
                              i     i     i,PM   Q i    i,M   R i
   114   115   116   117   118   119   120   121   122   123   124