Page 118 - Distributed model predictive control for plant-wide systems
P. 118

92                            Distributed Model Predictive Control for Plant-Wide Systems


           The Nash optimal solution of the whole system in this case is
                                                  −1
                                 dis
                              Δu (k)=(I − T D T ) D [  (k)− ̃ y (k)]             (5.67)
                                 M          r  E  c  1        P0
           Using the matrix decomposition technique, it gives
                                     −    [                         ] −  
                          (I − T D T )  =    (I − D ) +(I + D −   T D T )
                                                              r
                               r
                                                                   c
                                                         E
                                 E
                                                E
                                                                E
                                    c
                        −          −    [    −                   −   ] −    −  
              =   (I − D )  −   (I − D )  (I − D )  + (I + D −   T D T )  (I − D )  (5.68)
                                                      E
                                                                c
                                  E
                                           E
                      E
                                                             E
                                                           r
                                                                           E
           In general, (I − D ) − 1  and (I + D − 2T D T ) − 1  exist; therefore, the above equation holds.
                         E            E    r  E c
           Substitute (5.68) into (5.67) to obtain
                                         [      −1                   −1 ] −1  ∗
                                       −1
                         ∗
               dis
             Δu (k)= 2Δu (k)− 2(I − D )  (I − D )  +(I + D − 2T D T )    Δu (k)
                                                         E
                                     E
                                                                   c
                                               E
                                                               r
                                                                 E
               M         M                                                  M
                                                                                 (5.69)
                         ∗
                    = SΔu (k)
                         M
           with                          [                             ] −  
                        S =   I −   (I − D ) −    (I − D ) −    + (I + D −   T D T ) −  
                                                               r
                                                                 E
                                     E
                                                         E
                                               E
                                                                   c
                                  [           ]
                               −1
                   ∗
           From Δu (k)= (I-D ) D   (k)− ̃ y (k) , it has
                                          P0
                             E
                   M
                                                            ∗
                                                −1
                                    (k)− ̃ y (k)= D (I − D )Δu (k)
                                         P0            E    M
           Then it gives
                           ∗                    ∗    2      ∗    2
                          J = ‖  (k)− ̃ y (k)− AΔu (k)‖ + ‖Δu (k)‖ R
                                      P0
                                                     Q
                                                M
                                                            M
                                 −1         ∗         ∗   2      ∗    2
                            = ‖D (I − D )Δu (k)− AΔu (k)‖ + ‖Δu (k)‖             (5.70)
                                        E
                                 1          M         M   Q      M    R
                                  ∗   2
                            = ‖Δu (k)‖
                                  M   F
                     −1
                                  T
                                       −1
           with F =[D (I − D )− A] Q[D (I − D )− A]+ R
                            E
                                              E
                     1                 1
             Let
                                           ⎡A 11          ⎤
                                       A =  ⎢     ⋱      ⎥
                                        0
                                           ⎢             ⎥
                                           ⎣ 0        A mm⎦
             Then the prediction model of the whole distributed system under the mixed failure can be
           written as
                         dis                       dis               dis
                        y   = ̃ y (k)+(A + T GT )Δu (k)= ̃ y (k)+ A  u (k)       (5.71)
                         PM    P0      0    r  c   M       P0        M
           with
                                          A = A + T GT
                                                   r
                                               0
             Substituting (5.69) and (5.71) into (5.53), we derive
                                                  ∗
                                                       2
                                                               ∗
                          J dis  = ‖  (k)− ̃ y (k)− A S  u (k)‖ + ‖S  u (k)‖ 2 R
                                       P0
                                                  M
                                                               M
                                                       Q
                                                 ∗               ∗    2
                             = ‖  (k)− ̃ y (k)− A  u (k)+(A − A S)Δu (k)‖ Q
                                       P0
                                                                 M
                                                 M
                                                                                 (5.72)
                                     ∗             ∗   2
                               + ‖Δu (k)+(S − I)Δu (k)‖
                                     M             M   R
                                ∗      ∗   2
                             = J + ‖Δu (k)‖
                                       M   W
   113   114   115   116   117   118   119   120   121   122   123