Page 113 - Distributed model predictive control for plant-wide systems
P. 113

Local Cost Optimization-based Distributed Model Predictive Control      87


             where a (k)(k = 1, … , P; j = 1, … , m) is the sampled output value of the ith subsystem for the
                   ij
             jth subsystem unit step input at the sampling time instant k. The local performance index for
             the ith subsystem can be expressed as
                                                                2
                         min J (k)= ‖   (k)− ̃ y i,PM  (k)‖ 2  + ‖Δu i,M (k)‖ (i = 1, … , m)  (5.53)
                                      i,P
                              i
                       Δu i,M (k)                  Q i          R i
             where
                                          [  T          T      ] T
                                      (k)=    (k + 1) ···    (k + P)
                                     i
                                                        i
                                            i
             are the expected output values of the ith subsystem.
                                 ̃ y T  (k)=[̃ y T  (k + 1|k) L ̃ y T  (k + P|k)] T
                                  i,PM     i,M          i,M
                                           T
                                                       T
                                  ̃ y T  (k)=[̃ y (k + 1|k) L ̃ y (k + P|k)] T
                                   i,P0    i,0         i,0
             and
                             Δu T  (k)=[Δu  (k + 1|k) L Δu  (k + M − 1|k)] T
                               i,PM       i,M           i,M
             According to Nash optimality and extremum necessary condition
                                                 J
                                                 i   = 0
                                              Δu  (k)
                                                i,M
             at the sampling time instant k, the Nash optimal solution of the ith agent can be derived as
                                    ⎡                            ⎤
                                                     m
                          (l+1)     ⎢                ∑      (l)  ⎥
                       Δu    (k)= D     i,P  (k) − y (k)−  A Δu  (k) (i = 1, … , m)  (5.54)
                                                         ij
                                              i,P
                          i,M      ii ⎢                     j,M  ⎥
                                    ⎢                j=1         ⎥
                                    ⎣                j≠i         ⎦
                        T
                                  −1
                                     T
             with D =(A Q A + R ) A Q . If the algorithm is convergent, the Nash optimal solution
                            ii
                          i
                  ii
                                 i
                                        i
                        ii
                                     ii
             of the whole system can be written as
                                 Δu (k)= D Δu (k)+ D [  (k)− ̃ y (k)]             (5.55)
                                                              P0
                                           0
                                               M
                                                      1
                                    M
             with
                                               −D A     ···  −D A
                                   ⎡             11  12         11  1m⎤
                                    −D A  21            ···  −D A  2m
                                   ⎢                                 ⎥
                                                                22
                                       22
                              D =  ⎢                                 ⎥
                                0
                                   ⎢    ⋮         ⋮      ⋱      ⋮    ⎥
                                   ⎢                                 ⎥
                                   ⎣−D   A       ···    · ··         ⎦
                                       mm  m1
                                    D                 
                                   ⎡ 11                ⎤
                                         D 22
                                   ⎢                   ⎥
                              D =  ⎢                   ⎥
                                1
                                   ⎢           ⋱       ⎥
                                   ⎣               D mm  ⎥ ⎦
                                   ⎢
             In the iteration procedure, Equation (5.55) can be expressed as
                                   (l+1)       l
                                Δu    (k)= D Δu (k)+ D [  (k)− ̃ y (k)]           (5.56)
                                                               P0
                                            0
                                                       1
                                   M           M
   108   109   110   111   112   113   114   115   116   117   118