Page 134 - Distributed model predictive control for plant-wide systems
P. 134

108                           Distributed Model Predictive Control for Plant-Wide Systems


                                                                    T
                                 I       …           ⎡      M      ⎤
                                 ⎡ n ui  n ui  n ui ⎤  ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
                                 ⎢I  I   ⋱   ⋮ ⎥  ′  ⎢             ⎥
                                      n ui
                               =  ⎢  n ui  ⋱ ⋱     ⎥  ,    = I n ui  ···  I n ui  ⎥  (6.11)
                                                     ⎢
                                  ⋮
                              i
                                                  i
                                 ⎢           n ui⎥   ⎢             ⎥
                                 ⎣I  ··· I  I ⎦      ⎢             ⎥
                                  n ui   n ui  n ui  ⎣             ⎦
                             N = C S B    , Q = diag {Q}, R = diag {R }          (6.12)
                                                              M
                               i
                                                        i
                                                                  i
                                   a
                                       i i
                                                 P
             The following Lemma can be obtained based on Equations (6.5) and (6.7)–(6.12).
           Lemma 6.1 (Quadratic program) Under Assumption 6.1, each independent controller C ,
                                                                                    i
           i = 1, … , m, has to solve at time k the following optimization problem:
                                T
                        min [ΔU (k, M|k)H ΔU (k, M|k)− G (k + 1, P|k)ΔU (k, M|k)]  (6.13)
                                            i
                                                       i
                                         i
                                                                    i
                      ΔU i (k,M|k)  i
           where the positive definite matrix H has the form
                                        i
                                               T
                                         H = N QN + R                            (6.14)
                                           i   i   i   i
           and
                                               d
                                          T
                          G (k + 1, P|k)= 2N Q[Y (k + 1, P|k)− Z (k + 1, P|k)]   (6.15)
                                                           ̂
                            i             i                 i
           with
                                                 ′
                             ̂
                             Z (k + 1, P|k)= C S[B    u (k − 1)+ A L x (k|k)
                              i            a   i i i        a i i
                                               ′
                                         + A L ̂ x(k|k − 1)+ B U(k − 1, M|k − 1)]  (6.16)
                                                          ̃
                                                           i
                                            a i
             Proof. According to Equations (6.5) and (6.7)–(6.12), the stacked predictions of states and
           outputs of S calculated by subsystem S at time k is
                                           i
                       ⎧ ̂ i              a i i     i  i
                        X (k + 1, P |k) = S[A L x (k)+ B U (k, M|k)
                       ⎪                    ′
                                                       ̃
                                      + A L ̂ x(k|k − 1)+ B U(k − 1, M|k − 1)]   (6.17)
                       ⎨                  a  i          i
                       ⎪ ̂ i             ̂ i
                        Y (k + 1, P|k)= C X (k + 1, P|k)
                       ⎩               a
           where the last P − M + 1 samples of Û(k − 1, P|k − 1) and U (k, P|k) are assumed to be equal
                                                           i
           to the last element of U(k − 1, M|k − 1) and U (k, M|k), respectively.
                                               i
             By
                                                     h
                                                    ∑
                                u (k + h|k)= u (k − 1)+  Δu (k + r|k)
                                 i          i             i
                                                    r=0
           and (6.11), it has
                                            ′
                                U (k, M|k)=    u (k − 1)+    ΔU (k, M|k)         (6.18)
                                            i i
                                 i
                                                          i
                                                       i
           Then the QP problem (6.13) can be deduced by substituting (6.7)–(6.12), (6.17) into (6.6).
           This concludes the proof.
   129   130   131   132   133   134   135   136   137   138   139