Page 137 - Distributed model predictive control for plant-wide systems
P. 137

Cooperative Distributed Predictive Control                             111


               Through Equation (14), it has
                                     X(k, P|k − 1)=     (k, P|k − 1)              (6.29)
                                                    ̂
                                      ̂
                                     U(k, M|k − 1)=     (k, M|k − 1)              (6.30)
               By (6.29), (6.30), (6.23)–(6.25), and (6.28), the stacked prediction of the states of all sub-
             systems at time k is expressed as
                           (k + 1, P|k)= LS[ALx(k)+ B  (k, M|k)
                         ̂
                                          ̃
                                             ̂
                                                          ̃
                                      + AL    (k, P|k − 1)+ B    (k − 1, M|k − 1)]  (6.31)
               Noting that u (k − 1) =Γ U (k − 1, M|k − 1), by Equations (6.10) and (6.13e), it has
                          i
                                    i
                                  i
                                         ′
                             U (k, M|k)=       U (k − 1, M|k − 1)
                                             i
                              i
                                         i i
                                               d
                                        +    K [Y (k + 1, P|k)− Z (k + 1, P|k)]   (6.32)
                                                            ̂
                                           i  i              i
               Substituting (6.16) into (6.32), by (6.12), (6.23)–(6.25), (6.29), and (6.30), the complete
             stacked open-loop optimal sequence becomes
                             (k, M|k)=     (k − 1, M|k − 1)
                                                               d
                                     +   x(k)+     (k, P|k − 1)+   Y (k + 1, P|k)  (6.33)
                                                ̂
               Noting that the complete feedback control law computed by all controllers is
                                           u(k)=     (k, M|k)                     (6.34)
               Combining (6.2), (6.31), (6.33), and (6.34), the closed-loop state-space representation for
             the distributed case is derived as

                               x(k)= Ax(k − 1)+ B    (k − 1, M|k − 1)             (6.35)
                        ̂
                         (k, P|k − 1)= LS[ALx(k − 1)+ B  (k − 1, M|k − 1)
                                     + AL    (k − 1, P|k − 2)+ B    (k − 2, M|k − 2)]  (6.36)
                                                           ̃
                                        ̃
                                           ̂
                            (k, M|k)=   [Ax(k − 1)+ B    (k − 1, M|k − 1)]
                                     +   LS[ALx(k − 1)+ B  (k − 1, M|k − 1)
                                        ̃
                                           ̂
                                                           ̃
                                     + AL    (k − 1, P|k − 2)+ B    (k − 2, M|k − 2)]
                                                           d
                                     +     (k − 1, M|k − 1)+      (k + 1, P|k)    (6.37)
                               y(k)= Cx(k)                                        (6.38)
             where ̂ x(k|k) is substituted with x(k) due to the assumption of the fully accessible state.
               Define the extended state as
                        T
                            ̂ T
                                          T
                                                   T
               X (k)=[x (k), X (k, P|k − 1), U (k, M|k), U (k − 1, M|k − 1)] T  Then  by  Equations
                N
             (6.35)–(6.38), Theorem 6.2 is deduced.
   132   133   134   135   136   137   138   139   140   141   142