Page 249 - Distributed model predictive control for plant-wide systems
P. 249

Networked Distributed Predictive Control with Inputs and Information Structure Constraints  223

                     p       p
               Since x (⋅) and u (⋅) satisfy constraints (10.13) and (10.14) for all times l = 1, 2, … , k − 1,
                     i       i
             the following equation can be deduced:
                                    ‖ f                    ‖
                                                  j,i
                                    ‖x (k + s|k) − ̂ x (k + s|k)‖
                                      j,i
                                    ‖                      ‖P j
                                         (1 −   )(1 −   )      (1 −   )  
                                       ≤      √       +    √                     (10.36)
                                             2 m          2 m
                                              
                                       =  √
                                         2 m
               Thus, (10.29) holds for all s = 1, 2, … , N − 1.
               In what follows, we prove that (10.29) holds for s = N. Denote the feasible states of
             S , r ∈ P , used in controller S ,as
                                      i
              r
                    +j
                                            {
                                               f
                                              x (N + k − 1|k − 1) , r ∉ P
                             f
                            x (k + N − 1|k)=   r                    −i
                             r,i               f
                                              x (k + N − 1|k), r ∈ P
                                               r,i               −i
                                                          f
               Then, the discrepancy between the feasible state x (k + N |k) and the presumed state
                                                          j,i
             ̂ x (k + N |k) is
              j,i
                             ‖ f                     ‖
                                           j,i
                             ‖x (k + N |k) − ̂ x (k + N |k)‖
                               j,i
                             ‖                       ‖P j
                                     (                             )
                                        f
                               = ‖A dj  x (k + N − 1|k) − ̂ x (k + N − |k)       (10.37)
                                                        j,i
                                        j,i
                                     (                              )
                                       f
                                   j,j  ̆ j,i                         P j
                                 +A ̆ x (k + N − 1|k) − ̂ x ̆ j,i (k + N − 1|k) ‖
               Now consider
                              ‖ f                           ‖          
                                                j,i
                                j,i
                              ‖x (k + N − 1|k) − ̂ x (k + N − 1|k)‖ ≤ √
                              ‖                             ‖P j  2 m
             and the constraint
                        ‖ p                                ‖          
                        ‖x (k + N − 1|k − 1) − ̂ x (k + N − 1|k − 1)‖ ≤ √ , ∀j ∈ P
                                             j
                        ‖ j                                ‖P j
                                                                 2 m
               Then, in view of (10.25), we have
                                                              2
                                     ‖ f                     ‖
                                     ‖x (k + N |k) − ̂ x (k + N |k)‖
                                                    j,i
                                     ‖ j,i                   ‖P j
                                              2
                                            2                                    (10.38)
                                       ≤      
                                          j
                                             4m
                                             2
                                          2   
                                     ≤     
                                           4m
             This completes the proof of (10.29).
                                                             f
               In what follows, we will prove that the feasible control u (k + s|k) and the feasible state
                                                             i
              f
             x (k + s|k) satisfy constraints (10.13)–(8.11).
              j,i
   244   245   246   247   248   249   250   251   252   253   254