Page 247 - Distributed model predictive control for plant-wide systems
P. 247

Networked Distributed Predictive Control with Inputs and Information Structure Constraints  221


             Lemma 10.3 Suppose Assumptions 10.1–10.3 hold and x(k )∈ X, ∀k ≥ 0, if Problem 10.1
                                                             0
             has a solution at every update time l, l = 1, 2, … ,k − 1, then
                                  ‖ f                   ‖          
                                                j,i
                                    j,i
                                  ‖x (k + s|k) − ̂ x (k + s|k)‖ ≤ √              (10.29)
                                  ‖                     ‖P j
                                                              2 m
             for all j ∈ P , i ∈ P and all s = 1, 2, … , N, provided that (10.28) and the following parametric
                       i
             condition hold:
                                            √     N−2
                                              m 2  ∑
                                                        ≤ 1                      (10.30)
                                                      l
                                               min (P)  l=0
                                                                  f
             where    is as defined in (10.21). Furthermore, the feasible control u (k + s|k) and the feasible
                   l
                                                                  i
                  f
             state x (k + s|k) satisfy constraints (10.13)–(10.15).
                  j,i
               Proof. We will prove (10.29) first. Since a solution exists at update time 1, 2, … , k − 1,
             according to (10.5), (10.7), and (10.24), for any s = 1, 2, … , N − 1, the feasible state is
             given by
                                                 [      ]
                                                s x (k|k)
                                                   i
                                 f
                                x (k + s|k)= L A
                                 j,i         j,i  i
                                                  x (k|k)
                                                   i
                                                 s
                                                ∑    s−l
                                            + L    A   B ̂ u (k + l − 1|k)
                                               j,i   i  i i
                                                l=1
                                                 s                               (10.31)
                                                ∑    s−l
                                            + L    A   B ̂ u (k + l − 1|k)
                                               j,i   i  i i
                                                l=1
                                                 l
                                                ∑    s−l
                                            + L    A   ̃  (k + l − 1|k)
                                               j,i   i  A ̂ x̃ i
                                                        i
                                                l=1
             and the presumed state is
                                           p
                              ̂ x (k + s|k)= ̂ x (k + s|k − 1)
                               j,i         j,i
                                             [  p       ]
                                              x (k|k − 1)
                                               i
                                        = L    p
                                           j,i  x (k|k − 1)
                                               i,i
                                               s
                                              ∑    s−l  p
                                          + L    A   B u (k + l − 1|k − 1)
                                             j,i   i  i i
                                               l=1                               (10.32)
                                               s
                                              ∑    s−l
                                          + L j,i  A i  B ̂ u (k + l − 1|k − 1)
                                                      i i
                                               l=1
                                               l
                                              ∑   s−l
                                          + L    A   ̃  (k + l − 1|k − 1)
                                                      i
                                             j,i  i  A ̂ x̃ i
                                               l=1
             where, according to (10.5),
                         [  p       ]     [  p           ]
                           x (k|k − 1)      x (k − 1|k − 1)
                            i                i                 p
                            p         = A i  p            + B u (k − 1|k − 1)
                           x (k|k − 1)      x (k − 1|k − 1)  i i                 (10.33)
                            i,i              i,i
                                                           ̃
                                        + B ̂ u (k − 1|k − 1)+ A ̂ x (k − 1|k − 1)
                                           i i              i i
                                       ̂ x (k − 1|k − 1)= x (k − 1)
                                        i
                                                       i
   242   243   244   245   246   247   248   249   250   251   252