Page 250 - Distributed model predictive control for plant-wide systems
P. 250

224                           Distributed Model Predictive Control for Plant-Wide Systems


                                        f
             First, for any s = 1, 2, … , N − 1, u (k + l − 1|k)= ̂ u (k + l − 1|k). Thus, constraint (10.13)
                                        i              i
           is satisfied.
             Also,
                             s
                            ∑
                                  ‖ f                  ‖
                                  s−l  ‖x (k + l|k) − ̂ x (k + l|k)‖
                                               i
                                    i
                                  ‖                    ‖2
                            l=1
                                         s
                                    1   ∑     ‖ f                 ‖
                               ≤              s−l  ‖x (k + l|k) − ̂ x (k + l|k)‖  (10.39)
                                                           i
                                                i
                                    min (P )  ‖                   ‖P i
                                      i l=1
                                             √
                                        s      m
                                   1   ∑         2        
                               ≤             s−l   √
                                    min (P)  l=1      2 mm 2
           Thus, when
                                          √     s
                                           m
                                             2  ∑
                                                     s−l  ≤ 1
                                              (P)
                                          min   l=1
                f
           state x (k + s|k), s = 1, 2, … , N − 1, satisfy constraint (10.14).
                i
             Finally,
                                 ‖ f                   ‖
                                 ‖x (k + N |k) − ̂ x (k + N |k)‖
                                               i
                                   i
                                 ‖                     ‖P i
                                      ‖ f                    ‖
                                   = ‖x (k + N |k) − ̂ x (k + N |k)‖            (10.40)
                                                    i,i
                                        i,i
                                      ‖                      ‖P i
                                           
                                   ≤   √
                                      2 m
           which shows that constraint (10.15) is satisfied. This concludes the proof.
             In what follows we establish that, at time k, if conditions (8.18) and (8.20) are satisfied, then
            f
                          f
           x (k + s|k) and u (k + s|k), s = 1, 2, … , N, are a feasible solution of Problem 8.1.
            j,i           i
                                                             n
           Lemma 10.4 Suppose Assumptions 10.1–10.3 hold, x(k )∈ ℝ x , and conditions (10.30) and
                                                        0
           (10.25) are satisfied. For any k ≥ 0, if Problem 10.1 has a solution at every update time l, l =
                            f
           1, 2, … ,k − 1, then u (k + s|k)∈ U, for all s = 1, 2, … , N − 1.
                            i
                                                                                 f
             Proof. Since Problem 10.1 has a feasible solution at l = 1, 2, … , k − 1, and u (k +
                      p                                                          i
           s − 1|k)= u (k + s − 1|k − 1) for all s = 1, 2, … , N − 1, we only need to show that
                      i
            f
           u (k + N − 1|k)∈ U.
            i
             Since    has been chosen to satisfy the conditions of Lemma 10.1, K x ∈ U for all i ∈ P
                                                                     i i
                                                                                 f
                                                          f
           when x ∈Ω(  ). Consequently, a sufficient condition for u (k + N − 1|k)∈ U is that x (k +
                                                          i                      i
           N − 1|k)∈Ω(  ).
             In view of Lemmas 10.2 and 10.3, using the triangle inequality, we have
                       ‖ f           ‖    ‖ f                          ‖
                                                            i
                       ‖x (k + N − 1|k)‖ ≤ ‖x (k + N − 1|k) − ̂ x (k + N − 1|k)‖
                         i
                                            i
                       ‖             ‖P i  ‖                           ‖P i
                                          + ̂ x (k + N − 1|k) ‖                 (10.41)
                                            ‖
                                            ‖ i
                                                          ‖P i
                                                           
                                        ≤        √   + √
                                           2(q + 1) m  2 m
   245   246   247   248   249   250   251   252   253   254   255