Page 246 - Distributed model predictive control for plant-wide systems
P. 246

220                           Distributed Model Predictive Control for Plant-Wide Systems


             Proof. Since Problem 8.1 has a solution at time k − 1, by construction, it has
                                                ‖ p
                            ‖              ‖                      ‖
                              j,i
                            ‖̂ x (k + N − 1) |k‖ = ‖x (k + N − 1) |k − 1‖
                            ‖              ‖P j  ‖ j,i            ‖P j
                                                      
                                                ≤  √
                                                  2 m
             Define the presumed state of S , r ∈ P , in controller C as
                                      r
                                                          i
                                            +j
                                           {
                                             ̂ x (N + k − 1|k − 1) , r ∉ P i
                                              r
                           ̂ x (k + N − 1|k)=                                   (10.26)
                            r,i
                                             ̂ x (k + N − 1|k), r ∈ P
                                              r,i               i
           and substitute (10.26) and the definition (10.7) into (10.5) we have
                                 2
                    ‖           ‖
                    ‖̂ x (k + N |k)‖
                       j,i
                    ‖           ‖P j
                                                                2
                       ‖                                       ‖
                       ‖                   ∑                   ‖
                     = A ̂ x (k + N − 1|k) +   A ̂ x (k + N − 1|k) ‖
                       ‖
                       ‖ dj j,i
                                                jr r,i
                                                               ‖
                       ‖                                       ‖
                                          r∈P +j
                       ‖                                       ‖ P j
                        T
                                     T
                     = ̂ x (k + N − 1|k)A P A ̂ x (k + N − 1|k)
                        j,i          dj j  dj j,i
                                           ∑
                                       T
                          T
                      + 2̂ x (k + N − 1|k)A P  A ̂ x (k + N − 1|k)
                          j,i          dj j     jr r,i
                                          r∈P +j
                        ⎛                    ⎞
                         ∑   T                  ∑
                      +  ⎜  ̂ x (k + N − 1|k) A T ⎟  P  A ̂ x (k + N − 1|k)
                             r,i           jr  j     jr r,i
                        ⎜                    ⎟
                         r∈V ̆ j               r∈P +j
                        ⎝                    ⎠
                         2
                                 T
                      ≤    (   max (A A )
                                    dj
                        4m       dj
                                            (   1         1  ) 1
                                   1 ∑         −         −   2
                              T                 2  T      2
                      + 2   max (A A ) 2     max  P r  A P A P
                                                       jr r
                                                  dj j
                                 dj
                              dj
                                    r∈P +j
                                                                        )) 1
                                    (              )     (
                        ∑ ∑            −  1      −  1       −  1      −  1  2
                                          T
                                                                T
                      +            max  P r  2  A P A P  2     max  P q  2 A P A P  2
                                                                    jq q
                                               jr r
                                          jr j
                                                                jq j
                        r∈P +j q∈P +j
                        2
                             j
                     =                                                          (10.27)
                       4m
                                                                    √
                                                     ‖
                                          ‖
             Consequently, to ensure the bound ‖̂ x (k + N |k)‖ ≤ (1 −   )  ∕(2 m) holds in all con-
                                            j,i
                                          ‖          ‖P j
           trollers C , i ∈ P, a sufficient condition is that
                   i
                                                    2
                                       max    ≤ (1 −   ) , j ∈ P                (10.28)
                                            j
                                       j∈P
           This completes the proof.
   241   242   243   244   245   246   247   248   249   250   251