Page 47 - Distributed model predictive control for plant-wide systems
P. 47

Model Predictive Control                                                21


             response coefficient matrices
                                          ⎡s 11,l  s 12,l  ···  s 1m,l⎤
                                          ⎢s 21,l  s 22,l  ···  s 2m,l  ⎥
                                     S =  ⎢  ⋮   ⋮    ⋱    ⋮  ⎥                    (2.3)
                                       l
                                          ⎢                   ⎥
                                          ⎣s r1,l  s r2,l  ···  s rm,l  ⎦
             where s  is the lth step response coefficient relating the jth input to the ith output.
                   ij,l


             2.2.2  Prediction
             Suppose y (k + l|k), l = 1, 2, … , P + 1, is the output prediction when the current and future
                     0
             control moves are kept invariant. Then, it is shown that when only the jth input is changed,
             other inputs remain invariant. Then considering the ith output predictions in future P sampling
             instants responding to the change of the jth input, yields
                      y (k + 1|k)= y (k + 1|k)+ s Δu(k)
                       ij
                                              ij,1
                                   i,0
                              ⋮
                      y (k + M|k)= y (k + M|k)+ s  Δu(k)+ s  Δu(k + 1|k)+···
                      ij           i,0         ij,M      ij,M−1
                                  + s Δu(k + M − 1|k)
                                    ij,1
                  y (k + M + 1|k)= y (k + M + 1|k)+ s ij,M+1 Δu(k)+ s ij,M Δu(k + 1|k)+···  (2.4)
                   ij
                                   i,0
                                  + s Δu(k + M − 1|k)
                                    ij,2
                              ⋮
                      y (k + P|k)= y (k + P|k)+ s  Δu(k)+ s  Δu(k + 1|k)+···
                       ij          i,0        ij,P      ij,P−1
                                  + s ij,P−M+1 Δu(k + M − 1|k)
             where the notation y (k + l|k), Δu(k + l|k), indicates that this estimate is based on measure-
                              ij
             ments up to time k, that is, on measurements of the outputs up to y(k).
               Writing the output predictions in a vector form, we directly obtain

                                     ̃ y (k|k)= ̃ y (k|k)+ A Δ̃ u (k|k)            (2.5)
                                                       ij
                                      ij
                                                           j
                                              i,0
             where
                          ̃ y (k|k)=[y (k + 1|k), y (k + 2|k), … , y (k + P|k)] T
                           ij       ij       ij           ij
                         ̃ y (k|k)=[y (k + 1|k), y (k + 2|k), … , y (k + P|k)] T
                          i,0       i,0       i,0          i,0
                                                                          T
                         Δ̃ u (k|k)=[Δu (k + 1|k), Δu (k + 2|k), … , Δu (k + M − 1|k)]
                           j         j          j             j
                                  ⎡s ij,1  0    ···     0   ⎤
                                  ⎢ s     s     ···     0   ⎥
                                    ij,2   ij,1
                                  ⎢  ⋮     ⋮    ⋱       ⋮   ⎥
                             A =  ⎢                         ⎥
                               ij
                                  ⎢s ij,M  s ij,M−1  ···  s ij,1  ⎥
                                  ⎢  ⋮     ⋮    ⋱       ⋮   ⎥
                                  ⎢                         ⎥
                                  ⎣ s ij,P  s ij,P−1  ···  s ij,P−M+1⎦
   42   43   44   45   46   47   48   49   50   51   52