Page 51 - Distributed model predictive control for plant-wide systems
P. 51

Model Predictive Control                                                25


               where
                                       [  T    T           T  ] T   nP
                                Y min  = ̃ y 1,min  ̃ y 2,min  ···  ̃ y n,min  ∈ R
                                       [                     ] T   P
                                 T
                                ̃ y  = y      y     ···  y     ∈ R
                                 i,min  i,min  i,min      i,min
                                       [  T    T           T   ] T   nP
                                Y    = ̃ y     ̃ y    ···  ̃ y   ∈ R
                                  max   1,max  2,max       n,max
                                       [                      ] T   P
                                 T
                                ̃ y  = y i,max  y i,max  ···  y i,max  ∈ R
                                 i,max
             2. Input increment constraint: Δu  ≤ Δu (k + l|k) ≤ u  . The concatenated form can
                                          j,min   j          j,max
               be expressed as
                                        ΔU    ≤ ΔU(k|k) ≤ ΔU                      (2.17)
                                           min              max
               where
                                     [  T       T             T  ] T   mM
                             ΔU min  = Δ̃ u 1,min  Δ̃ u 2,min  ···  Δ̃ u m,min  ∈ ℝ
                                     [                          ] T  M
                               T
                             Δ̃ u  = Δu      Δu      ···  Δu      ∈ ℝ
                               j,min    j,min   j,min        j,min
                                     [  T        T            T   ] T   mM
                             ΔU max  = Δ̃ u 1,max  Δ̃ u 2,max  ···  Δ̃ u m,max  ∈ ℝ
                                     [                          ] T   M
                               T
                            Δ̃ u   = Δu       Δu      ···  Δu      ∈ ℝ
                               j,max    j,max   j,max        j,max
             3. Input magnitude constraint u j,min  ≤ u (k + l|k) ≤ u j,max . The optimization problem should
                                               j
               satisfy the following constraint:
                                    U    ≤ BΔU(k|k)+ ̃ u(k − 1) ≤ U               (2.18)
                                      min                      max
               where
                                     [  T    T           T   ] T   mM
                              U min  = ̃ u 1,min  ̃ u 2,min  ···  ̃ u m,min  ∈ ℝ
                               T     [                     ] T   M
                              ̃ u  = u      u     ···  u      ∈ ℝ
                               j,min  j,min  j,min      j,min
                                     [  T     T           T   ] T  mM
                              U max  = ̃ u 1,max  ̃ u 2,max  ···  ̃ u m,max  ∈ ℝ
                               T     [                      ] T   M
                              ̃ u  = u      u      ···  u     ∈ ℝ
                               j,max  j,max  j,max       j,max
                                 B = block − diag{B , … , B }(m blocks)
                                                 0
                                                       0
                                     ⎡1   0   ···  0⎤
                                     ⎢1   1   ⋱    ⋮⎥   M×M
                                B =  ⎢ ⋮  ⋱   ⋱    0 ⎥  ∈ ℝ
                                 0
                                     ⎢              ⎥
                                     ⎣1  ···  1    1⎦
                                     [       T          T               T  ] T
                            ̃ u(k − 1)= ̃ u (k − 1)  ̃ u (k − 1)  ···  ̃ u (k − 1)
                                                                 m
                                       1
                                                 2
                                     [                              ] T   M
                           ̃ u (k − 1)= u (k − 1)  u (k − 1)  · · ·  u (k − 1)  ∈ ℝ
                            j         j         j             j
                 Equations (2.16)–(2.18) can be written in a uniform form as
                                             CΔU(k|k) ≤ b                         (2.19)
   46   47   48   49   50   51   52   53   54   55   56