Page 50 - Distributed model predictive control for plant-wide systems
P. 50

24                            Distributed Model Predictive Control for Plant-Wide Systems


           where
                                 y (k + P|k − 1)= y (k + P − 1|k − 1)            (2.13)
                                                 i,0
                                  0
             By summarizing the above deductions, at each time k > 0, ̃ y (k|k) can be calculated by
                                                             0
                                                 m
                                                ∑
                                                                 ̃
                           ̃ y (k|k)= ̃ y (k|k − 1)+  A Δu (k − 1)+ f    (k)     (2.14)
                            i,0      i,0            ij,1  j       i i
                                                j=1
           where
                                        [                    ] T
                                  A ij,1  = s ij,2  s ij,3  ···  s ij,P+1
                                        [               ] T
                                     f = f    f   ···  f
                                     ̃
                                     i    i1  i2       iP
             And Y (k|k) can be calculated as
                   0
                             Y (k|k)= Y (k|k − 1)+ A ΔU(k|k − 1)+ FΥ(k)          (2.15)
                                                                ̃
                                                 ̃
                              0
                                       0
                                                  1
           where
                             [          T                               ] T
                 Y (k|k − 1)= ̃ y (k|k − 1)  ̃ y (k|k − 1) T  ···  ̃ y (k|k − 1) T
                   0           1,0          2,0               n,0
                             [                                                ] T
                 ̃ y (k|k − 1)= y (k + 1|k − 1)  y (k + 2|k − 1)  · · ·  y (k + P|k − 1)
                                              i,0
                               i,0
                  i,0
                                                                  i,0
                             [                                    ] T
                  ΔU(k − 1)= Δu (k − 1)  Δu (k − 1)  ···  Δu (k − 1)
                                                            m
                                1
                                            2
                             ⎡A 11,1  A 12,1  ···  A 1m,1⎤
                             ⎢A     A      ···  A   ⎥
                         ̃
                        A =    21,1   22,1       2m,1
                          1  ⎢  ⋮     ⋮    ⋱     ⋮  ⎥
                             ⎢                      ⎥
                             ⎣A r1,1  A r2,1  ···  A nm,1  ⎦
                             ⎡ f ̃ 1  0  ···  0 ⎤
                             ⎢ 0  ̃ f  ···  0 ⎥
                          ̃
                         F =      2
                             ⎢  ⋮  ⋮  ⋱    ⋮  ⎥
                             ⎢              ⎥
                             ⎣0   0   ···  ̃ f ⎦
                                           n
                             [                      ] T
                       Υ(k)=    (k)     (k)  ···     (k)
                               1     2           n
           2.2.5   DMC with Constraint
           In the real application of DMC, the constraints on actuator slew rates, actuator ranges, and
           constraints on the controlled variables usually exist. In the following, we discuss how to handle
           the constraint in DMC.
           1. Output constraint: y i,min  ≤ y (k + l|k) ≤ y i,max , l = 1, 2, … , P.
                                      i
              At each time instant k, the output prediction is (2.7). Hence, we can let the optimization
              problem satisfies the following constraint:
                                   Y min  ≤ Y (k|k)+ AΔU(k|k) ≤ Y max            (2.16)
                                                  ̃
                                           0
   45   46   47   48   49   50   51   52   53   54   55