Page 48 - Distributed model predictive control for plant-wide systems
P. 48

22                            Distributed Model Predictive Control for Plant-Wide Systems


             Suppose all the inputs can be changed. Then considering the ith output and applying the
           superposition principle yields
                                                    r
                                                   ∑
                                  ̃ y (k|k)= ̃ y (k|k)+  A Δ̃ u (k|k)             (2.6)
                                   i       i,0         ij  j
                                                   j=1
           where
                            ̃ y (k|k)=[y (k + 1|k), y (k + 2|k), … , y (k + P|k)] T
                             i        i        i           i
             Considering all the inputs and outputs yields

                                                     ̃
                                    Y(k|k)= Y (k|k)+ AΔU(k|k)                     (2.7)
                                             0
           where
                                   [     T                       ] T
                           Y(k|k)= ̃ y (k|k)  ̃ y (k|k) T  ···  ̃ y (k|k) T
                                    1        2             r
                                   [      T                         ] T
                          Y (k|k)= ̃ y (k|k)  ̃ y (k|k) T  ···  ̃ y (k|k) T
                                    1,0
                                                             r,0
                                              2,0
                           0
                                   [       T                          ] T
                         ΔU(k|k)= Δ̃ u (k|k)  Δ̃ u (k|k) T  ···  Δ̃ u (k|k) T
                                      1         2               m
                                   ⎡A 11  A 12  ···  A ⎤
                                                    1m
                                   ⎢A    A    ···  A ⎥
                               A =   21   22        2m
                               ̃
                                   ⎢  ⋮   ⋮   ⋱     ⋮  ⎥
                                   ⎢                  ⎥
                                   ⎣A    A    ···
                                     r1   r2       A ⎦
                                                     rm
           2.2.3   Optimization
           Suppose the criterion for optimizing ΔU(k|k) is to minimize the following cost function:
                                                2            2
                                   J(k)= ‖E(k|k)‖ + ‖ΔU(k|k)‖                     (2.8)
                                                 ̃ W         ̃ R
           where W ≥ 0 and R ≥ 0 are symmetric matrices
                          ̃
                 ̃
                                   [     T                      ] T
                           E(k|k)= ̃ e (k|k)  ̃ e (k|k) T  ···  ̃ e (k|k) T
                                    1        2             n
                                   [                                   ] T
                           ̃ e (k|k)= e (k + 1|k)  e (k + 2|k)  · · ·  e (k + P|k)
                            i       i          i               i
                        e (k + l|k)= y (k + l)− y (k + l|k)
                                    i,r
                                             i
                         i
                        ̃ T ̃ ̃
             Then, when A WA + R is nonsingular, minimization of (2.8) yields
                                ̃
                                           ̃ T ̃ ̃
                                  ΔU(k)=(A WA + R) A WE (k)                       (2.9)
                                                   ̃ −1 ̃ T ̃
                                                            0
           where
                                  [      T         T              T ] T
                         E (k|k)= ̃ e (k|k)  ̃ e (k|k)  ···  ̃ e (k|k)
                                             2,0
                                   1,0
                                                            n,0
                           0
                                  [                                      ] T
                         ̃ e (k|k)= e (k + 1|k)  e (k + 2|k)  · · ·  e (k + P|k)
                                                                i,0
                          i,0
                                               i,0
                                   i,0
                      e (k + l|k)= y (k + l)− y (k + l|k)
                       i,0
                                  i,r
                                            i,0
           y i,r  (k + l) is the set-point value at the future time k + 1for the ith output; y i,0  (k + l|k)isthe
           prediction on the ith output at future time k + 1, when the control moves for the time k and
           future sampling instants are kept invariant.
   43   44   45   46   47   48   49   50   51   52   53