Page 49 - Distributed model predictive control for plant-wide systems
P. 49

Model Predictive Control                                                23


               At each time k, implement the following control move:
                                             Δu = DE (k)                          (2.10)
                                                    0
             where
                                     D = L(A WA + R) A W
                                           ̃ T ̃ ̃
                                                   ̃ −1 ̃ T ̃
                                         ⎡        ···    ⎤
                                         ⎢        ···    ⎥
                                     L =                ∈ ℝ m×mM
                                         ⎢ ⋮  ⋮  ⋱   ⋮ ⎥
                                         ⎣        ···    ⎦
                                         ⎢
                                                      ⎥
                                         [            ]    M
                                        = 1  0  ···  0 ∈ ℝ
               A simple selection of W and R is
                                 ̃
                                       ̃
                               W = diag{W , W , … , W }
                                ̃
                                          1   2      n
                                R = diag{R , R , … , R }
                                ̃
                                          1  2     m
                               W = diag{w , w , … , w },  i ∈{1, 2, … , n}
                                 i       i1  i2    iP
                               R = diag{r , r , … , r },  j ∈{1, 2, … , m}
                                                  jM
                                 j
                                         j1
                                            j2
                                                     ̃ T ̃ ̃
                                                             ̃
               Taking R > 0 guarantees the nonsingularity of A WA + R.
                     ̃
             2.2.4  Feedback Correction
             At the initial time k = 0, suppose the system is in the steady state. For the start-up of DMC, we
             can take y  (1|0) = y (0), i = 1, 2, … , n. For each time k > 0, y  (k + l|k − 1) can be the basis
                     i,0      i                                i,0
             for constructing y  (k + l|k)forthe ith output.
                           i,0
               Also denote
                                           (k)= y (k)− y (k|k − 1)                (2.11)
                                         i
                                               i
                                                     i
             where
                                                       m
                                                      ∑
                                y (k|k − 1)= y (k|k − 1)+  s Δu (k − 1)           (2.12)
                                           i,0
                                                          ij,1
                                                              j
                                i
                                                      j=1
               Since    (k) is the effect on the output by the unmodeled uncertainties, it can be used to
                     i
             predict the future prediction error, so as to compensate the predictions based on the model. In
             summary, we can use the following to predict y  (k + l|k):
                                                   i,0
                                                    m
                                                   ∑
                        y (k + 1|k)= y (k + 2|k − 1)+  s Δu (k − 1)+ f   (k)
                                     i,0
                                                       ij,2
                         i,0
                                                                    i,1
                                                           j
                                                   j=1
                                 ⋮
                                                        m
                                                       ∑
                       y (k + M|k)= y (k + M + 1|k − 1)+  s    Δu (k − 1)+ f     (k)
                        i,0          i,0                   ij,M+1  j      i,M i
                                                       j=1
                                 ⋮
                                                    m
                                                   ∑
                        y (k + P|k)= y (k + P|k − 1)+  s ij,P+1 Δu (k − 1)+ f    (k)
                         i,0
                                                                      i,P i
                                     i,0
                                                             j
                                                    j=1
   44   45   46   47   48   49   50   51   52   53   54