Page 281 - Dynamics and Control of Nuclear Reactors
P. 281

APPENDIX E Frequency response analysis of linear systems    283






                                  Im G(jw)

                                 |G(jw)|


                                   φ(ω)
                              0               Re G(jw)
                  FIG. E.2
                  Representation of a complex number G(jω) in terms of its magnitude and phase.

                                                   e j ωt + φÞ  e  j ωt + φÞ
                                                            ð
                                                    ð
                                             j
                                               ð
                                      δytðÞ ¼ Α GjωÞj                           (E.12)
                                                         2j
                                  ð
                           ð
                  Note that  e j ωt + φÞ  e  j ωt + φÞ  ¼ sin ωt + φÞ. Therefore, the steady-state response to a
                                          ð
                               2j
                  sinusoidal input is
                                        δytðÞ ¼ Α GjωÞjsin ωt + φÞ              (E.13)
                                                        ð
                                               j
                                                 ð
                  This development shows that when a linear system is perturbed by a sinusoidal input
                  of amplitude A and frequency ω, its steady-state response is also a sinusoidal func-
                  tion of same frequency (ω) and shifted by an angle, Φ, and the amplitude is the prod-
                  uct of jG(jω)j and the input amplitude. The theoretical frequency response is
                  obtained simply by substituting jω for s in the transfer function and carrying out
                  the complex arithmetic.
                  E.2 Computing frequency response function
                  Now let us illustrate the calculation of a system frequency response.

                   Example E.1
                    Consider the following transfer function:
                                                     1
                                               GsðÞ ¼                         (E.14)
                                                    s +1
                                                   1   1 jω
                                           GjωÞ ¼    ¼
                                             ð
                                                 jω +1  1+ ω 2
                                                        1
                                              f
                                                ð
                                             Re GjωÞg ¼                       (E.15a)
                                                      1+ ω 2
                                                        ω
                                                ð
                                              f
                                             Im GjωÞg ¼                      (E.15b)
                                                      1+ ω 2
                                                          1=2
                                                               1
                                                 2     2
                                                            p
                                     j GjωÞj ¼ ð  ReGÞ +ImGð  Þ  ¼ ffiffiffiffiffiffiffiffiffiffiffiffi  (E.16)
                                      ð
                                                              1+ ω 2
                                                                             Continued
   276   277   278   279   280   281   282   283   284   285   286