Page 305 - Dynamics and Control of Nuclear Reactors
P. 305

APPENDIX F State variable models and transient analysis  307





                   Example F.4
                    For the system defined in Example F.2, solve for x 1 (t) and x 2 (t) for a unit step input f(t). Assume
                    zero initial conditions.



                   Solution

                                                      1
                                                ð
                                            XsðÞ ¼ sI  AÞ bF sðÞ
                                                            0 1
                                             1      s +4  3
                                        ¼
                                          ð s +1Þ s +5Þ  1 s +2  1 s
                                              ð
                                                   1        3
                                          XsðÞ ¼
                                               ss +1Þ s +5Þ s +2
                                               ð
                                                   ð
                                                      3
                                            X 1 sðÞ ¼
                                                  ð
                                                 ss +1Þ s +5Þ
                                                      ð
                                                  3  3   t  3   5t
                                         and x 1 tðÞ ¼   + e    e
                                                  5  4   20
                                                    s +2
                                            X 2 sðÞ ¼
                                                 ss +1Þ s +5Þ
                                                  ð
                                                      ð
                                                 2  1    3
                                                      t
                                          and x 2 tðÞ ¼   e    e  5t
                                                 5  4   20

                    Remark
                    Note that y(t)¼x 1 (t)+x 2 (t).
                       Substituting for x 1 and x 2 .
                                                1  1    3
                                                     t
                                           ytðÞ ¼   + e    e  5t
                                                5  2   10
                       Compare this with the answer in Example F.2.

                  F.4 The matrix exponential solution
                  This section addresses the matrix exponential solution method. This method uses a
                  clever application of matrix properties to obtain an efficient and simple solution tech-
                  nique [4]. For a model that is an inhomogeneous (f6¼0) linear system (g¼0) with an
                  inhomogeneous term, (f) that is constant or can be represented as piecewise constant
                  at each time step, the solution is as follows.
   300   301   302   303   304   305   306   307   308   309   310