Page 300 - Dynamics and Control of Nuclear Reactors
P. 300

302    APPENDIX F State variable models and transient analysis




                         F.3.2 Transfer function representation of MIMO systems
                         Assume the initial conditions are known and are given by X (0). Taking the Laplace
                         transform of Eq. (F.7a) gives.
                                                sXsðÞ x 0ðÞ ¼ AXsðÞ + BFsðÞ
                         Simplification yields.

                                                 ð sI  AÞXs ðÞ ¼ X 0 ðÞ + BFs ðÞ         (F.8)
                         Solve for X(s) to give.

                                                        1           1
                                                  ð
                                                              ð
                                            XsðÞ ¼ sI  AÞ x 0ðÞ + sI  AÞ BFsðÞ           (F.9)
                         Eq. (F.9) may be used to solve for X(t). Assuming x(0)¼0, we can express X(s) using
                         the form.
                                                    XsðÞ ¼ G fX sðÞFsðÞ                 (F.10)
                         where
                                                                1
                                                    G fX ¼ sI  AÞ B                     (F.11)
                                                         ð
                         G fX is an (nxp) matrix and is the transfer function matrix between f (input variables)
                         and X (state variables).
                            To derive the transfer function between Y(s) and f(s), take the Laplace transform
                         of Eq. (F.7b).

                                                      YsðÞ ¼ CXsðÞ                      (F.12)
                         Substituting Eq. (F.10) in Eq. (F.12) gives.
                                                               1
                                                  YsðÞ ¼ CsI  AÞ BFsðÞ                  (F.13)
                                                        ð
                         From Eq. (F.13) define the transfer function matrix between input f and output Y as
                                                                1
                                                   G fY sðÞ ¼ CsI  A  B                 (F.14)
                         Using Eq. (F.14) in Eq. (F.13) gives

                                                    YsðÞ ¼ G fY sðÞFsðÞ                 (F.15)


                           Remark
                           Note that the roots of the denominator of the transfer functions in Eq. (F.14) are the roots of the
                           polynomial in the Laplace variable, s, and is given by the determinant of (sI – A). These roots
                           are also the poles of the transfer functions. For an n-th order matrix, there are n-poles. These poles
                           are also the eigenvalues of system matrix, A. Thus, the system stability can be easily checked by
                           calculating the eigenvalues of matrix, A.
   295   296   297   298   299   300   301   302   303   304   305