Page 302 - Dynamics and Control of Nuclear Reactors
P. 302

304    APPENDIX F State variable models and transient analysis




                         Therefore, for a MIMO system described by Eq. (F.7a), the solution X(t) is
                         written as.

                                                          ð t
                                           xtðÞ ¼ exp AtðÞx 0ðÞ +  exp At τފBf τðÞdτ   (F.23)
                                                              ½
                                                                ð
                                                          0
                         For the linear time-invariant system, the matrix φ(t) in Eq. (F.20) is the same as the
                         matrix function exp. (At). Thus, for this time-invariant linear system.

                                                     φ tðÞ ¼ exp AtðÞ                   (F.24)



                           Example F.2
                            A linear system is described by
                                                  dx     2  3      x 1
                                                                  0
                                                   ¼           +   f
                                                  dt   1  4  x 2  1
                                                       y ¼ x 1 + x 2 :


                            (a) Determine the transfer function Y(s)/F(s).
                            (b) Determine the response y(t) for a unit step f(t). Assume zero initial conditions.



                           Solution

                                                              1
                                                   XsðÞ ¼ sI  AÞ bF sðÞ
                                                        ð

                                                s +2  3

                                        j sI  Aj ¼        ¼ s +2Þ s +4Þ 3 ¼ s +1Þ s +5Þ
                                                         ð
                                                                         ð
                                                             ð
                                                                     ð
                                                  1  s +4

                                                          1     s +4  3
                                                    1
                                              ð sI  AÞ  ¼
                                                       ð s +1Þ s +5Þ  1 s +2
                                                           ð
                                                          ½
                                                      YsðÞ ¼ 11ŠXsðÞ

                                                             1 0
                                                    ½
                                                  ¼ 11Š sI  AÞ   FsðÞ
                                                       ð
                                                               1
                                                    YsðÞ   ð s 1Þ
                                                        ¼
                                                    FsðÞ  ð s +1Þ s +5Þ
                                                             ð
                            (a) For a unit step input, F(s)¼1/s  s 1
                                                    YsðÞ ¼
                                                             ð
                                                         ð
                                                         ss +1Þ s +5Þ
   297   298   299   300   301   302   303   304   305   306   307