Page 114 - Dynamics of Mechanical Systems
P. 114

0593_C04*_fm  Page 95  Monday, May 6, 2002  2:06 PM





                       Kinematics of a Rigid Body                                                   95


                              B
                            R
                       Then  α  is:
                                                   d ωω
                                            R αα =  R R  B      +   R
                                               B
                                                        dt = ˙ ω n
                                                             11  w dn  1  dt + ˙ ω n 2
                                                                   1
                                                                             2
                                                 +ω  R dn  dt + ˙ ω n  + ω  R dn  dt
                                                   2    2     3  3  3   3
                                                                                               (4.8.10)
                                                = ˙ ω n  + ˙ ω n  + ˙ ω n
                                                   1 1   2  2  3  3
                                                 +ω  R dn  dt + ω  R dn  dt + ω  R dn  dt
                                                   1   1      2   2      3   3
                       Observe that the last three terms each involve derivatives of unit vectors fixed in B. From
                       Eq. (4.5.2) these derivatives may be expressed as:
                                                  R    dt= ωω B  ×  i (   )
                                                          R
                                                   dn          n   i = 12 3                     (4.8.11)
                                                                      ,,
                                                      i
                       Hence, the last three terms of Eq. (4.8.10) may be expressed as:
                                                         R
                                              R
                                                                    R
                                            ω dn   dt +  ω dn  dt +  ω dn  dt
                                              1   1     2   2      3   3
                                                             R
                                                  R
                                                                         R
                                                 = ω ωω B × n + ω ωω B  × n + ω ωω B ×  n
                                                 1       1   2      2   3      3
                                                          R
                                                                    R
                                               R
                                                = ωω B × ω n + ωω B × ω n + ωω B  ×  ω n       (4.8.12)
                                                      1 1       2  2       3  3
                                               R
                                                = ωω B ×( ω n + ω n + ω n )
                                                      1 1   2  2  3  3
                                                    R
                                               R
                                                = ωω B × ωω B  =  0
                                  B
                       Therefore,  αα αα  becomes:
                                R
                                                    R  B
                                                     αα= ˙ ω n  + ˙ ω n  + ˙ ω n               (4.8.13)
                                                          1 1   2  2  3  3
                       Example 4.8.1: A Simple Gyro
                       See Example 4.7.1. Consider again the simple gyro of Figure 4.7.5 and as shown in Figure
                       4.8.1. Recall from Eq. (4.7.13) that the angular velocity of the gyro D in the fixed frame R
                       may be expressed as:
                                                ωω= ( Ω +  s ˙ ψ  φ  Y ) N  1  +  c ˙ ψ N Y2  + φN Y3  (4.8.14)
                                               R  D                       ˙
                                                                   φ
                                                       θ
                                                        ˙
                       where as before Ω (the gyro spin) is  ; φ and ψ are orientation angles as shown in Figure
                       4.8.1; and N , N , and N  are unit vectors fixed in the yoke Y. Determine the angular
                                      Y2
                                  Y1
                                              Y3
                       acceleration of D in R.
                        Solution: By differentiating in Eq. (4.4.14) we obtain:
                                           αα= ( Ω ψ s + ˙ ˙ c φ  Y ) N  1 +( Ω ψ  φ  dN Y1  dt
                                                         ψφ
                                                                     + ˙
                                                  + ˙˙
                                          R  D   ˙                      s )  R
                                                      φ
                                               +( ψ c − ˙ ˙  s φ  Y ) N  2  + ˙ ψ c dN  Y2  dt  (4.8.15)
                                                      ψφ
                                                 ˙
                                                                  R
                                                                  φ
                                                   φ
                                                ˙˙
                                               +φN Y3  + φ R dN Y3  dt
   109   110   111   112   113   114   115   116   117   118   119