Page 127 - Dynamics of Mechanical Systems
P. 127

0593_C04*_fm  Page 108  Monday, May 6, 2002  2:06 PM





                       108                                                 Dynamics of Mechanical Systems



                                   ˆ
                            L      n                   Z
                             D      3
                        n
                         3
                                θ                        N  3
                        L  R
                                     D      n                         i   S        R 1     R        D
                               ψ             2                                               2
                        N                                             1
                         1        G                                                    θ
                                         φ
                        X          r                        N  2      2                       ψ
                                                 S                    3
                                                                               φ
                                         ˆ
                          T     n  1     n  2                Y            N  i     n  ˆ  i   n  i   d  i
                      FIGURE 4.12.1                                  FIGURE 4.12.2
                      A circular disk rolling on a surface S. (Reprinted from  Configuration graph orienting D in S.
                      Huston, R. L., and Liu, C. Q., Formulas for Dynamic Analysis,
                      p. 258, by courtesy of Marcel Dekker, Inc., 2001.)


                        From the addition theorem for angular velocity (Eq. (4.7.6)), the angular velocity of D
                       in S may be expressed as:

                                                          ˙
                                                                ˙
                                                       D
                                                     S ωω= φN 3  + ˆ  1  + ˙ ψn 2              (4.12.1)
                                                                θn
                                                                                 S
                                                                                   D
                        From the configuration graph of Figure 4.12.2 we may express  ω  entirely in terms of
                       one of the unit vector sets. In terms of the n  (fixed in R )  ω  is:
                                                                           S
                                                                             D
                                                              i
                                                                         2
                                                              +
                                                             ˙
                                                 S  D  ˙        ˙      ˙
                                                  ωω= θn  +( ψ φ s ) n  +  c φ n               (4.12.2)
                                                         1       θ  2    θ  3
                       where s  and c  represent sinθ and cosθ.
                                    θ
                              θ
                        From Eqs. (4.11.5) and (4.12.2), the velocity of G is:
                                                                      n )
                                               V = ωω D ×  n r  = r( ψφθ  ˙  n                 (4.12.3)
                                                                        −
                                                                   ˙
                                                                 +
                                                   S
                                                 G
                                                               ˙
                                                                   s
                                                                         r
                                                           3        θ  1    2
                       where r is the radius of D.
                        The angular acceleration of D in S and the acceleration of G in S may be obtained by
                       differentiation of Eqs. (4.12.2) and (4.12.3). To perform this differentiation, it is necessary
                                                                 Z
                                                             n
                                                              3
                                                                                     D
                                                                              G
                                                                                     P
                                                                             ψ  r
                                                                                            X
                       FIGURE 4.12.3
                       A circular disk rolling in a straight line.                      n  1
   122   123   124   125   126   127   128   129   130   131   132