Page 403 - Dynamics of Mechanical Systems
P. 403

0593_C11_fm  Page 384  Monday, May 6, 2002  2:59 PM





                       384                                                 Dynamics of Mechanical Systems


                        The velocities and accelerations of P , P , and P  in the fixed or inertial frame R are (see
                                                                  3
                                                           2
                                                         1
                       Eqs. (11.7.2), (11.7.3), and (11.7.4)):
                                                                    2 ˙
                                                                   θ
                                                                                ˙˙
                                                                                θ
                              v = ˙ x  n +(l +  x )θ ˙  n ,  a = ˙˙ 1 [  + x ) ] n + ( [  l + x ) + 2θ ˙  x ˙ 1] n  (11.10.23)
                                                         x −(l
                                P 1
                                                     P 1
                                    11       1   2               1     1      1          2
                                                                                 θ
                                      2 +
                                                                   θ
                                                                                 ˙˙
                                                                    2 ˙
                                                                            l
                                                        x −( l
                            v = ˙ x  n +( l  x )θ ˙  n ,  a = ˙˙ 2 [  2 + x ) ] n + ( [  2 + x ) + 2θ ˙  x ˙ 2] n  (11.10.24)
                                                    P 2
                             P 2
                                 2  1      2   2                 2     1       2          2
                                                                    2 ˙
                                                                   θ
                                                                                 θ
                                      3 +
                                                                                 ˙˙
                                                                           l
                                                        x −( l
                           v = ˙ x  n +( l  x )θ ˙  n ,  a = ˙˙ 3 [  3 + x ) ] n + ( [  3 + x ) + 2θ ˙  x ˙ 3] n  (11.10.25)
                             P 3
                                                    P 3
                                 3  1      3   2                 3    1        3          2
                       where n , n , and n  are the unit vectors shown in Figures 11.10.5 and 11.10.6. Let G be
                                 2
                              1
                                        3
                       the mass center of T. Then, from Eq. (11.7.1), the velocity and acceleration of G in R are:
                                           v = ( ) 2 θ ˙  n ,  a =−( ) 2 θ 2 ˙  n +( ) 2 θ n  (11.10.26)
                                                                              ˙˙
                                            G
                                                           G
                                                                L
                                                L
                                                                          L
                                                      2                1         2
                       Finally, the angular velocity and the angular acceleration of T in R are:
                                                                     ˙˙
                                                        ˙
                                                    ωω = θn     and     αα =θn                (11.10.27)
                                                          3             3
                        As noted in Section 11.7, the system has four degrees of freedom represented by the
                       coordinates  x ,  x ,  x , and  θ. The corresponding partial velocities and partial angular
                                      2
                                   1
                                         3
                       velocities are recorded in Eqs. (11.7.5), (11.7.6), and (11.7.7) as:
                                          v =  n ,  v P 1  =  0  ,  v =  0  ,  v = (l +  x  n )
                                                                       P 1
                                           P 1
                                                              P 1
                                           ˙ x 1  1  ˙ x 2    ˙ x 3    ˙ θ     1  2
                                                                           2 +
                                          v =  0  ,  v P 2  =  n ,  v =  0  ,  v = ( l  x  n )
                                                                       P 2
                                           P 2
                                                              P 2
                                           ˙ x 1    ˙ x 2  1  ˙ x 3    ˙ θ      2  2
                                                                           3 + )
                                          v =  0  ,  v P 3  =  0  ,  v =  n ,  v = ( l x n    (11.10.28)
                                                              P 3
                                           P 3
                                                                       P 3
                                                                        3
                                           ˙ x 1    ˙ x 2     ˙ x 3  1  ˙ θ     3  2
                                          v G  =  0 ,  v G  =  0 ,  v G  =  0 ,  v G  = (L  2)n
                                            1 x ˙    2 x ˙    3 x ˙    ˙ θ      2
                                         ωω  =  0 ,  ωω  =  0 ,  ωω  =  0 ,  ωω  = n
                                            1 x ˙    2 x ˙    3 x ˙    ˙ θ  3
                        From Eqs. (11.10.23) to (11.10.27), the inertia forces on the particles and the tube may be
                       represented by:
                                                     1 [
                                                                            ˙˙
                                                              2 ˙
                                                                            θ
                                     F =− m a =− m x ˙˙ −(l + x ) ] n − ( [  + x ) + 2θ ˙  x ˙ 1] n
                                                             θ
                                      *
                                                                    m l
                                             P 1
                                      P 1                  1     1        1          2
                                                     2 [
                                                               θ
                                                                     m 2 + ) +
                                                                2 ˙
                                     F =− m a =− m x ˙˙ −( 2 + x ) ] n − ( [  l  x  θ  2θ ˙  x ˙ 2] n
                                                                               ˙˙
                                      *
                                                         l
                                             P 2
                                     P 2                     2    1          2          2
                                                                                     3]
                                                             3) ]
                                                   [
                                                                    − (
                                     F =− m a =−mx ˙˙ 3 ( 3 + x θ n 1 [  3 + x 3) +θ  2 x ˙ n  (11.10.29)
                                                                                   θ
                                                                                   ˙
                                                                               ˙˙
                                                                2 ˙
                                                      −
                                      *
                                                         l
                                                                         l
                                             P 3
                                                                     m
                                             3
                                     P 3                                                2
                                                                    ˙˙
                                                        2 ˙
                                     F *  =−Ma G  = (L  2)θ n  − (L  2)θn
                                                             M
                                                M
                                      T                   1           2
                                                                    ˙˙
                                             ααωω
                                                       ωω
                                     T *  =−I  ⋅ −  I  ⋅ ) =−( ML 2  12) θn
                                      T    G      ×( G                 3
   398   399   400   401   402   403   404   405   406   407   408