Page 406 - Dynamics of Mechanical Systems
P. 406

0593_C11_fm  Page 387  Monday, May 6, 2002  2:59 PM





                       Generalized Dynamics: Kinematics and Kinetics                               387


                       From Figure 11.10.7, we see that N , N , and N  may be expressed in terms of the unit
                                                      1
                                                                  3
                                                          2
                       vectors n , n , and n  as:
                                         3
                               1
                                  2
                                             N = cosφ n − sin cosθ n +sin sinφ n
                                                            φ
                                                                        θ
                                              1        1           1           3
                                                                         φ
                                                            φ
                                             N = sinφ n + cos cosθ n − cos sinθ n             (11.10.40)
                                              2       1            2           3
                                             N =sinθ n +cosθ n
                                              3       2       3
                       Hence, by substituting into Eq. (11.10.39) v  becomes:
                                                             G
                                                  v = ( ψφ  ˙     n ) θ  − rθ ˙  n            (11.10.41)
                                                       r ˙
                                                          + sin
                                                    G              1     2
                       Also, the angular velocity ωω ωω of D relative to S may be expressed as (see Eq. (4.12.2)):
                                                                 )
                                                            ˙
                                                   ˙
                                                                      ˙
                                                                      φ
                                                            φ
                                               ωω= θn  +( ψ ˙  + sinθ n  + cosθn              (11.10.42)
                                                     1             2         3
                       Observe that the result of Eq. (11.10.41) could have been obtained directly as ωω ωω × rn , the
                                                                                                 3
                       expression for velocities of points of rolling bodies (see Section 4.11, Eq. (4.11.5)).
                        The partial velocities of G and the partial angular velocities of D with respect to θ, φ,
                       and ψ are then:
                                              v =−  r n ,  v =  r  sinθ  n ,  v =  r n 1      (11.10.43)
                                               G
                                                                        G
                                                          G
                                                                         ˙ ψ
                                                           ˙ φ
                                                                    1
                                                      2
                                               ˙ θ
                       and
                                            ωω = n 1  ,  ωω = sinθn 2  + cosθn 3  ,  ωω = n 2  (11.10.44)
                                                                           ˙ ψ
                                              ˙ θ
                                                      ˙ φ
                                                                                    *
                       The inertia force system on D may be represented by a single force F  passing through G
                                                                *
                                                                       *
                                                        *
                       together with a couple with torque T  where F  and T  are (see Section 8.13, Eqs. (8.13.7)
                       to (8.13.12)):
                                                       G
                                                 *
                                                            m
                                                F =−m a =− (a  n + a  n + a  n )              (11.10.45)
                                                               1 1  2  2  3  3
                       and
                                                      *
                                                     T = T  n + T  n + T  n                   (11.10.46)
                                                          1 1  2  2  3  3
                       where
                                                   T =−α Ι  + ω ω    − Ι 33)
                                                               2 (Ι
                                                    1    1 11    3  22
                                                   T =−α Ι  + ω ω     − Ι 11)                 (11.10.47)
                                                               3 (Ι
                                                    2    2 22    1  33
                                                               1 (Ι
                                                   T =−α Ι  + ω ω    − Ι 22)
                                                    3    3 33    2  11
   401   402   403   404   405   406   407   408   409   410   411