Page 404 - Dynamics of Mechanical Systems
P. 404

0593_C11_fm  Page 385  Monday, May 6, 2002  2:59 PM





                       Generalized Dynamics: Kinematics and Kinetics                               385


                        Finally, from Eq. (11.9.6), the generalized inertia forces are:

                                          F =  v ⋅ F + v ⋅ F + v ⋅ F + v ⋅ F + ω  ⋅ T  *
                                                   *
                                            *
                                                           *
                                                                   *
                                                                       *
                                                                           *
                                                        P 2
                                                               P 3
                                                P 1
                                                ˙
                                                                               ˙
                                           x 1  x 1  P 1  x 1 ˙  P 2  x 1 ˙  P 3  x 1 ˙  T  x 1  T  (11.10.30)
                                                   1 [
                                                             2 ˙
                                             =− mx ˙˙ −(l + x ) ]
                                                            θ
                                                          1
                                          F =  v ⋅ F +  v P 2  F ⋅  *  + v ⋅ F + v ⋅ F + ω  ⋅ T *
                                           *
                                                   *
                                                                       G
                                                                   *
                                                                           *
                                                P 1
                                                               P 3
                                                        ˙
                                                ˙
                                                                               ˙
                                           x 2  x 2  P 1  x 2  P 2  ˙ x 2  P 3  x 2 ˙  T  x 2  T  (11.10.31)
                                                   2 [
                                                              2 ˙
                                                       2 +
                                                             θ
                                             =− mx ˙˙ −( l  x ) ]
                                                           2
                                          F =  v ⋅ F +  v P 2  F ⋅  *  + v ⋅ F + v ⋅ F + ω  ⋅ T  *
                                           *
                                                                       G
                                                                   *
                                                                           *
                                                   *
                                                               P 3
                                                P 1
                                                        ˙
                                                ˙
                                                                               ˙
                                           x 3  x 3  P 1  x 3  P 2  ˙ x 3  P 3  x 3 ˙  T  x 3  T  (11.10.32)
                                                   3 [
                                             =− mx ˙˙ −( 3 +l  x ) ]
                                                              2 ˙
                                                             θ
                                                           3
                                             *
                                     *
                                    F = v P 1  ⋅F P 1  + v P 2  ⋅F P 2 *  + v P 3  ⋅F P 3 *  + v G  ⋅F T *  +  ω ⋅T T *
                                     θ
                                                         θ ˙
                                                 θ ˙
                                                                        θ ˙
                                                                θ ˙
                                         θ ˙
                                                              ]
                                                       ˙˙
                                                                                  θ
                                                                                  ˙˙
                                      =− m(l + ) ( [  l +  x θ ) + 2 θ ˙  x ˙ −  m(2l + x ) ( [  2l +  x ) + 2 θ ˙  x ˙  ]
                                              x ˙
                                               1      1       1         2       2       2
                                                 )[
                                                                                       ˙˙
                                                              ˙
                                                              θ
                                                          ˙˙
                                        −  m(3l +  x ) (3l + ) + 2 x ˙  ] − ( ) 2  2  θ ˙˙ − (  2  12 ) θ
                                                          θ
                                                       x
                                                                    ML
                                                                              ML
                                                3       3       3
                       or
                                               [
                                                               2
                                                     2
                                                                          ˙˙
                                         *
                                        F =− (l  +  x ) +( l +  x ) +( l +  x ) 2 ]  θ − M L (  2  ˙˙
                                                                  3
                                                        2
                                             m
                                                                                     θ ) 3
                                         θ
                                                             2
                                                                       3
                                                    1
                                                                                              (11.10.33)
                                              m ( [  + )     + )        + ) ]  ˙
                                                                            ˙
                                            − 2  l  x x ˙ +( l  x x ˙ +( l  x x θ
                                                                      3
                                                           2
                                                     1  1       2  2      3  3
                       Example 11.10.5: Rolling Circular Disk
                       As a final example consider again the rolling circular disk D with mass m and radius r of
                       Figure 11.10.7. (We first considered this system in Section 4.12 and later in Sections 8.13
                       and 11.3.) As we observed in Section 11.3, this is a nonholonomic system having three
                                                                                    Z
                                                           n
                                                            3                           N  3
                                                                  θ
                                                                      D     n  2
                                                                 ψ
                                                                    G
                                                           X
                                                                        φ                   Y
                       FIGURE 11.10.7                        N  1     c
                       A circular disk rolling on a horizontal                          N  2
                       surface.                             L     n  1
   399   400   401   402   403   404   405   406   407   408   409