Page 407 - Dynamics of Mechanical Systems
P. 407

0593_C11_fm  Page 388  Monday, May 6, 2002  2:59 PM





                       388                                                 Dynamics of Mechanical Systems


                              G
                       where a  is the acceleration of G relative to the fixed surface S (the inertia frame); where
                       ω  and α  (i = 1, 2, 3) are the n  components of ωω ωω and the angular acceleration αα αα of D relative
                              i
                        i
                                                i
                       to S; and, finally, where:
                                                  Ι =  Ι = mr  2  4 ,  Ι = mr  2  2           (11.10.48)
                                                   11  33         22
                       From Eqs. (4.12.7) and (4.12.8), a  and αα αα are:
                                                    G

                                                                r − + ˙ ˙
                                           + sinθ
                                             ˙˙
                                   a = ( ψφ       + φθ2 ˙ ˙ cosθ  n )  + ( θ ψ φ cosθ + φ ˙ 2 sin cosθ )
                                                                   ˙˙
                                                                                    θ
                                    G
                                        r ˙˙
                                                             1                                (11.10.49)
                                             ˙ ˙
                                         r +− ( ψφ sinθ − φ ˙ 2 sin θ − θ ˙ 2  n )
                                                          2
                                                                  3
                       and
                                               ˙˙
                                                 − ˙ ˙
                                                                         ˙ ˙
                                           αα= ( θ ψ φ cosθ ) n 1  +( ψ  + sinφ  θ + θφ cosθ ) n 2
                                                                  ˙˙
                                                               ˙˙
                                                                                              (11.10.50)
                                                 ˙˙
                                                        ˙ ˙
                                                                 ˙ ˙
                                                 φ
                                               +( cosθ φθ  sinθ ψ
                                                       −
                                                               + ) θ n
                                                                     3
                       Hence, F  and T  may be written as:
                              *
                                     *
                                        F =− ( [  ˙˙ +  ˙˙ sin + φθ cosθ  n )  +− + ψ φ cosθ
                                                                        (
                                                        θ
                                                                             ˙ ˙
                                                                          θ
                                                             ˙ ˙
                                                                          ˙˙
                                             mr ψφ
                                         *
                                                           2
                                                                     1
                                                                                              (11.10.51)
                                                               ˙ ˙
                                            +φ ˙ 2 sin cosθ  n )  +− ( ψ φ sin − φ ˙ 2 sin θ θ ˙ 2  n ) ]
                                                                    θ
                                                   θ
                                                                              −
                                                                            2
                                                          2                         3
                       and
                                                      ) ( [  ˙˙  ˙ ˙            n )
                                                                          θ
                                            *
                                                   2
                                           T =−(mr 4    θ − 2ψ φ cos −θ φ ˙ 2 sin cosθ  1
                                                               ˙ ˙
                                               +( 2ψ   ˙˙ sin + 2θ  θφ cosθ  n )              (11.10.52)
                                                   ˙˙ + 2φ
                                                                        2
                                               +( φ cos + 2θ  ψθ  n ) ]
                                                          ˙ ˙
                                                 ˙˙
                                                              3
                        Finally, by using Eq. (11.9.6), the generalized inertia forces become:
                                         *
                                        F = v G θ ˙  ⋅F *  + ωω θ ˙  ⋅T *
                                         θ
                                               (
                                                                  θ
                                                 θψθcos +
                                                  ˙˙
                                          = mr − +   ˙ ˙  θ φ sin cos θ)
                                              2
                                                             ˙ 2
                                             −( mr )(  θ − 2 ψ φcos −  ˙ 2  θ  θ)             (11.10.53)
                                                          ˙ ˙
                                                     ˙˙
                                                 2
                                                               θ φ sin cos
                                                  4
                                               [
                                                      ˙˙
                                                      θ
                                                                   θ
                                          =  mr −( ) +( ) 2  ψ φcos +( )  φ sin cos θ ]
                                                                               θ
                                                             ˙ ˙
                                              2
                                                                          ˙ 2
                                                                       54
                                                         3
                                                  54
   402   403   404   405   406   407   408   409   410   411   412