Page 343 - Electromagnetics
P. 343

Since this is a two-dimensional problem we may decompose the fields into TE and TM
                        sets. For an electric line source we need only the TM set, and write E z as a superposition
                        of plane waves using (4.400). For y≷0 we represent the field in terms of plane waves
                        traveling in the ±y-direction. Thus
                                                     ∞+ j
                                                 1
                                     ˜                     +       − jk x x − jk y y
                                     E z (x, y,ω) =       A (k x ,ω)e  e    dk x ,  y > 0,
                                                 2π
                                                   −∞+ j
                                                     ∞+ j
                                                 1
                                     ˜                     −       − jk x x + jk y y
                                     E z (x, y,ω) =       A (k x ,ω)e  e    dk x ,  y < 0.
                                                 2π
                                                   −∞+ j
                        The transverse magnetic field may be found from the axial electric field using (4.212).
                        We find
                                                                   ˜
                                                               1 ∂E z
                                                       ˜
                                                       H x =−                                 (4.404)
                                                              jω ˜µ ∂y
                        and thus
                                                 ∞+ j
                                              1                   k y
                                 ˜                     +             − jk x x − jk y y
                                 H x (x, y,ω) =       A (k x ,ω)    e    e     dk x ,  y > 0,
                                             2π                 ω ˜µ
                                                −∞+ j
                                                 ∞+ j
                                              1                   k y
                                 ˜                     −               − jk x x + jk y y
                                 H x (x, y,ω) =       A (k x ,ω) −    e    e    dk x ,  y < 0.
                                             2π                   ω ˜µ
                                                −∞+ j
                        To find the spectra A (k x ,ω) we apply the boundary conditions at y = 0. Since tangential
                                          ±
                        ˜
                        E is continuous we have, after combining the integrals,
                                             ∞+ j
                                          1                              − jk x x
                                                    +
                                                   A (k x ,ω) − A (k x ,ω) e  dk x = 0,
                                                               −
                                         2π
                                            −∞+ j
                        and hence by the Fourier integral theorem
                                                               −
                                                    +
                                                   A (k x ,ω) − A (k x ,ω) = 0.               (4.405)
                                                     ˜
                                                ˜
                                                          ˜
                        We must also apply ˆ n 12 × (H 1 − H 2 ) = J s . The line current may be written as a surface
                        current density using the δ-function, giving
                                              ˜
                                                           ˜
                                                                         ˜

                                                                 −
                                                    +
                                           − H x (x, 0 ,ω) − H x (x, 0 ,ω) = I(ω)δ(x).
                        By (A.4)
                                                          1     ∞  − jk x x
                                                   δ(x) =        e    dk x .
                                                          2π
                                                              −∞
                        Then, substituting for the fields and combining the integrands, we have
                                          ∞+ j
                                      1                              ω ˜µ
                                                 +          −           ˜     − jk x x
                                                A (k x ,ω) + A (k x ,ω) +  I(ω) e  = 0,
                                      2π                              k y
                                        −∞+ j
                        © 2001 by CRC Press LLC
   338   339   340   341   342   343   344   345   346   347   348