Page 407 - Electromagnetics
P. 407

˜
                                                ˜
                                                                                        ˜
                        we see that E ∼∇ × (∇× A e ) has all three components. This choice of A e produces a
                                                                      ˜
                        field TM to the r-direction. We need only choose ∇· A e so that the resulting differential
                        equation is convenient to solve. Substituting the above expressions into (5.162) we find
                        that
                                                                               ˆ
                                                                    ˆ
                                                                       2 ˜
                                                ˜
                                                             2 ˜
                                                                                   2 ˜
                                 ˆ r     1 ∂  
  ∂ A e     1  ∂ A e     θ ∂ A e  φ  ∂ A e  2 ˜
                             −             sin θ    +             +       +            − ˆ rk A e =
                              r sin θ  r ∂θ    ∂θ     r sin θ ∂φ 2  r ∂r∂θ   r sin θ ∂r∂φ
                               2  ˜    ˆ  2  ˜     ˆ    2  ˜
                              k ∂φ e   θ k ∂φ e    φ   k ∂φ e
                             ˆ r    +          +             .                                (5.164)
                              jω ∂r    r jω ∂θ   r sin θ jω ∂φ
                                ˜                              ˜                                   ˜
                        Since ∇· A e only involves the derivatives of A e with respect to r, we may specify ∇· A e
                        indirectly through
                                                                 ˜
                                                        ˜    jω ∂ A e
                                                        φ e =      .
                                                             k 2  ∂r
                        With this (5.164) becomes
                                                                                 2 ˜
                                                                  2 ˜
                                                      ˜
                                      1     1 ∂  
  ∂ A e     1  ∂ A e     2 ˜  ∂ A e
                                                sin θ     +            + k A e +     = 0.
                                    r sin θ  r ∂θ    ∂θ     r sin θ ∂φ  2        ∂r  2
                        Using
                                                              ˜
                                                                       2 ˜
                                                   1 ∂     2  ∂  
  A e      ∂ A e
                                                        r          =
                                                   r ∂r   ∂r  r       ∂r 2
                        we can write the differential equation as
                                                              ˜
                                                                               2 ˜
                                      ˜
                                                                                           ˜
                            1 ∂     2  ∂(A e /r)     1  ∂     ∂(A e /r)     1  ∂ (A e /r)  2  A e
                                 r          +           sin θ        +                + k    = 0.
                            2
                                               2
                                                                           2
                                                                        2
                           r ∂r       ∂r      r sin θ ∂θ      ∂θ       r sin θ  ∂φ 2       r
                                                                                       ˜
                        The first three terms of this expression are precisely the Laplacian of A e /r.Thus we
                        have
                                                                ˜ A e

                                                        2
                                                            2
                                                     (∇ + k )       = 0                       (5.165)
                                                                r
                                       ˜
                        and the quantity A e /r satisfies the homogeneous Helmholtz equation.
                                                                             ˜
                                                                       ˜
                          The TM fields generated by the vector potential A e = ˆ rA e may be found by using
                        (5.160) and (5.161). From (5.160) we have the electric field
                                                                              ˜

                                          ˜       ˜     ˜         ˜       jω ∂ A e
                                          E =− jωA e −∇φ e =− jωˆ rA e −∇         .
                                                                          k 2  ∂r
                        Expanding the gradient we have the field components
                                                         1   
  ∂ 2
                                                  ˜                  2  ˜
                                                  E r =           + k   A e ,                 (5.166)
                                                       jω ˜µ˜  c  ∂r 2
                                                               2 ˜
                                                         1   1 ∂ A e
                                                  ˜
                                                  E θ =            ,                          (5.167)
                                                            c
                                                       jω ˜µ˜  r ∂r∂θ
                                                                    2 ˜
                                                         1     1  ∂ A e
                                                  ˜
                                                  E φ =                .                      (5.168)
                                                            c
                                                       jω ˜µ˜  r sin θ ∂r∂φ
                        © 2001 by CRC Press LLC
   402   403   404   405   406   407   408   409   410   411   412