Page 409 - Electromagnetics
P. 409

Example of spherical TE–TM decomposition: a plane wave. Consider a uni-
                        form plane wave propagating in the z-direction in a lossless, homogeneous material of
                        permittivity   and permeability µ, such that its electromagnetic field is
                                            ˜
                                                      ˜
                                                                   ˜
                                            E(r,ω) = ˆ xE 0 (ω)e − jkz  = ˆ xE 0 (ω)e − jkr cos θ ,
                                                      ˜
                                                                    ˜
                                                      E 0 (ω)  − jkz  E 0 (ω)  − jkr cos θ
                                            ˜
                                            H(r,ω) = ˆ y   e    = ˆ x    e      .
                                                        η            η
                        We wish to represent this field in terms of the superposition of a field TE to r and a field
                                                                                     ˜
                                                                               ˜
                                                                        ˜
                                                                  ˜
                        TM to r. We first find the potential functions A e = ˆ rA e and A h = ˆ rA h that represent
                        the field. Then we may use (5.166)–(5.170) and (5.175)–(5.179) to find the TE and TM
                        representations.
                                                                        ˜
                                                               ˜
                                                 ˜
                          From (5.166) we see that A e is related to E r , where E r is given by
                                                                  ˜
                                             ˜
                                        ˜
                                                                 E 0 cos φ ∂
                                       E r = E 0 sin θ cos φe − jkr cos θ  =  e − jkr cos θ  .
                                                                   jkr  ∂θ
                        We can separate the r and θ dependences of the exponential function by using the identity
                                                 n
                        (E.101). Since j n (−z) = (−1) j n (z) = j −2n  j n (z) we have
                                                      ∞
                                                      "   −n
                                            e − jkr cos θ  =  j  (2n + 1) j n (kr)P n (cos θ).
                                                      n=0
                        Using
                                                             0
                                              ∂ P n (cos θ)  ∂ P (cos θ)  1
                                                             n
                                                        =           = P (cos θ)
                                                                       n
                                                  ∂θ          ∂θ
                        we thus have
                                                 ˜
                                                         ∞
                                                j E 0 cos φ  "
                                          ˜                 −n              1
                                         E r =−             j  (2n + 1) j n (kr)P (cos θ).
                                                                            n
                                                   kr
                                                        n=1
                                                         1
                        Here we start the sum at n = 1 since P (x) = 0. We can nowidentify the vector potential
                                                         0
                        as
                                          ˜     ˜       ∞   −n
                                          A e  E 0 k    "  j  (2n + 1)      1
                                             =     cos φ              j n (kr)P (cos θ)       (5.180)
                                                                            n
                                           r    ω            n(n + 1)
                                                        n=1
                        since by direct differentiation we have
                                         1   
  ∂  2
                                  ˜                  2  ˜
                                  E r =           + k   A e
                                       jω ˜µ˜  c  ∂r 2
                                         ˜
                                         E 0 k     "  j −n (2n + 1)  1  
  ∂ 2   2
                                                   ∞
                                     =        cos φ             P (cos θ)     + k  [rj n (kr)]
                                                                 n
                                          2
                                       jω ˜µ˜  c       n(n + 1)           ∂r 2
                                                   n=1
                                          ˜
                                                  ∞
                                         j E 0 cos φ  "  −n          1
                                     =−              j  (2n + 1) j n (kr)P (cos θ),
                                                                     n
                                            kr
                                                 n=1
                        which satisfies (5.166). Here we have used the defining equation of the spherical Bessel
                        functions (E.15) to showthat
                           
  2                   2
                             ∂     2             ∂           ∂          2
                                + k   [rj n (kr)] = r  j n (kr) + 2  j n (kr) + k rj n (kr)
                             ∂r 2                ∂r 2        ∂r
                                                      ∂      2  ∂
                                                       2
                                                                             2
                                                 2
                                              = k r       +          j n (kr) + k rj n (kr)
                                                    ∂(kr) 2  kr ∂(kr)

                                                         n(n + 1)                   n(n + 1)
                                                  2                       2
                                              =−k r 1 −           j n (kr) + k rj n (kr) =  j n (kr).
                                                          (kr) 2                       r
                        © 2001 by CRC Press LLC
   404   405   406   407   408   409   410   411   412   413   414