Page 412 - Electromagnetics
P. 412

where a n is given by (5.187).
                          The total transverse electric field is found by superposing the TE and TM transverse
                        fields found from the total potentials. We have already computed the transverse incident
                        fields and may easily generalize these results to the total potentials. By (5.183) and
                        (5.191) we have

                                            ˜          ∞
                                   ˜ t     j E 0       "     ˆ         ˆ (2)      1
                                  E (a) =     sin θ cos φ  a n J (ka) + b n H  (ka) P (cos θ) −
                                    θ                         n         n       n
                                           ka
                                                       n=1
                                             ˜        ∞
                                            E 0      "                         1
                                                                      ˆ (2)
                                                            ˆ
                                        −        cos φ   a n J n (ka) + c n H n  (ka) P (cos θ) = 0,
                                                                               n
                                          ka sin θ
                                                      n=1
                        where
                                                                 (2)
                                                       ˆ (2)
                                                      H   (x) = xh (x).
                                                        n        n
                        By (5.184) and (5.192) we have
                                             ˜        ∞
                                   ˜ t      j E 0    "     ˆ         ˆ (2)      1
                                  E (a) =        sin φ   a n J (ka) + b n H  (ka) P (cos θ) −
                                    φ                       n         n        n
                                          ka sin θ
                                                     n=1
                                           ˜          ∞
                                          E 0        "                         1
                                                                     ˆ (2)
                                                            ˆ
                                        −    sin θ sin φ  a n J n (ka) + c n H n  (ka) P (cos θ) = 0.
                                                                              n
                                          ka
                                                      n=1
                        These two sets of equations are satisfied by the conditions
                                                                        ˆ
                                                   ˆ
                                                   J (ka)               J n (ka)
                                                    n
                                            b n =−        a n ,  c n =−  (2)  a n .
                                                                       ˆ
                                                  ˆ
                                                    (2)
                                                  H n (ka)             H n (ka)
                        We can nowwrite the scattered electric fields as
                                             ∞
                                            "
                              ˜ s
                                                                      1
                                                             ˆ (2)
                                     ˜


                                                   ˆ (2)
                              E =− j E 0 cos φ  b n H  (kr) + H  (kr) P (cos θ),
                               r                    n         n       n
                                            n=1
                                   ˜      "                                1
                                           ∞
                              ˜ s  E 0                ˆ (2)   1               ˆ (2)   1
                             E =     cos φ     jb n sin θ H  (kr)P (cos θ) − c n  H  (kr)P (cos θ) ,
                               θ                       n      n                n      n
                                   kr                                    sin θ
                                          n=1
                                   ˜      "       1
                                          ∞
                              ˜ s  E 0                ˆ (2)   1              ˆ (2)   1
                             E =     sin φ    jb n   H   (kr)P (cos θ) − c n sin θ H  (kr)P (cos θ) .
                               φ                       n      n               n      n
                                   kr            sin θ
                                          n=1
                          Let us approximate the scattered field for observation points far from the sphere. We
                        may approximate the spherical Hankel functions using (E.68) as
                             ˆ (2)
                                                                    n − jz
                                       (2)
                                                                              ˆ (2)
                                                          ˆ (2)
                                                 e
                                                                                            e
                            H   (z) = zh (z) ≈ j  n+1 − jz ,  H  (z) ≈ j e  ,  H  (z) ≈− j  n+1 − jz .
                              n        n                   n                   n
                                                    ˜
                        Substituting these we find that E r → 0 as expected for the far-zone field, while
                                                   ∞
                                         e − jkr  "                           1
                                 ˜ s   ˜              n+1         1               1
                                 E ≈ E 0     cos φ   j    b n sin θ P (cos θ) − c n  P (cos θ) ,
                                                                 n
                                                                                  n
                                  θ
                                          kr                                 sin θ
                                                  n=1
                                                  ∞
                                         e − jkr  "          1
                                 ˜ s   ˜              n+1         1               1
                                 E ≈ E 0     sin φ   j    b n   P (cos θ) − c n sin θ P (cos θ) .
                                                                                 n
                                                                 n
                                  φ
                                          kr                sin θ
                                                  n=1
                        © 2001 by CRC Press LLC
   407   408   409   410   411   412   413   414   415   416   417