Page 481 - Electromagnetics
P. 481

By this we mean that each component of A is a linear combination of the components of
                        B:

                                        A 1 (r, t) = a 11 B 1 (r, t) + a 12 B 2 (r, t) + a 13 B 3 (r, t),






                                        A 2 (r, t) = a 21 B 1 (r, t) + a 22 B 2 (r, t) + a 23 B 3 (r, t),






                                        A 3 (r, t) = a 31 B 1 (r, t) + a 32 B 2 (r, t) + a 33 B 3 (r, t).






                        Here the a ij may depend on space and time (or frequency). The prime on the second

                                                                                             ˆ ˆ ˆ
                        index indicates that A and B may be expressed in distinct coordinate frames (i 1 , i 2 , i 3 )
                        and (i 1 , i 2 , i 3 ), respectively. We have
                            ˆ   ˆ   ˆ

                                       A 1 = a 11 i 1 + a 12 i 2 + a 13 i 3 · i 1 B 1 + i 2 B 2 + i 3 B 3 ,
                                                               ˆ
                                                        ˆ

                                                                               ˆ

                                                                         ˆ
                                                                  ˆ

                                                 ˆ

                                       A 2 = a 21 i 1 + a 22 i 2 + a 23 i 3 · i 1 B 1 + i 2 B 2 + i 3 B 3 ,
                                                        ˆ
                                                               ˆ


                                                                  ˆ
                                                 ˆ
                                                                               ˆ
                                                                         ˆ


                                       A 3 = a 31 i 1 + a 32 i 2 + a 33 i 3 · i 1 B 1 + i 2 B 2 + i 3 B 3 ,
                                                                         ˆ
                                                               ˆ
                                                        ˆ
                                                                  ˆ
                                                                               ˆ


                                                 ˆ

                        and since B = i 1 B 1 + i 2 B 2 + i 3 B 3 we can write


                                     ˆ
                                                  ˆ
                                           ˆ

                                                   ˆ
                                                            ˆ
                                                                      ˆ
                                              A = i 1 (a · B) + i 2 (a · B) + i 3 (a · B)



                                                      1         2        3
                        where

                                                  a = a 11 i 1 + a 12 i 2 + a 13 i 3 ,
                                                   1       ˆ      ˆ      ˆ
                                                  a = a 21 i 1 + a 22 i 2 + a 23 i 3 ,

                                                   2       ˆ      ˆ      ˆ
                                                  a = a 31 i 1 + a 32 i 2 + a 33 i 3 .

                                                                  ˆ
                                                           ˆ
                                                                         ˆ
                                                   3
                        In shorthand notation
                                                          A = ¯ a · B                          (A.69)
                        where
                                                              ˆ
                                                        ˆ
                                                                    ˆ

                                                     ¯ a = i 1 a + i 2 a + i 3 a .             (A.70)


                                                           1
                                                                      3
                                                                2
                        Written out, the quantity ¯ a looks like
                                              ¯ a = a 11 (i 1 i 1 ) + a 12 (i 1 i 2 ) + a 13 (i 1 i 3 ) +
                                                      ˆ ˆ
                                                                         ˆ ˆ
                                                               ˆ ˆ
                                               + a 21 (i 2 i 1 ) + a 22 (i 2 i 2 ) + a 23 (i 2 i 3 ) +
                                                                         ˆ ˆ
                                                               ˆ ˆ
                                                      ˆ ˆ
                                               + a 31 (i 3 i 1 ) + a 32 (i 3 i 2 ) + a 33 (i 3 i 3 ).
                                                               ˆ ˆ
                                                      ˆ ˆ
                                                                         ˆ ˆ
                        Terms such as i 1 i 1 are called dyads, while sums of dyads such as ¯ a are called dyadics.
                                     ˆ ˆ
                        The components a ij of ¯ a may be conveniently placed into an array:

                                                                    
                                                           a 11 a 12 a 13


                                                    [¯ a] =   a 21 a 22 a 23    .


                                                           a 31 a 32 a 33


                        Writing
                                                                       
                                                       A 1             B 1
                                                [A] =   A 2    ,  [B] =   B 2     ,
                                                       A 3             B 3
                        © 2001 by CRC Press LLC
   476   477   478   479   480   481   482   483   484   485   486