Page 219 - Elements of Distribution Theory
P. 219

P1: JZX
            052184472Xc07  CUNY148/Severini  May 24, 2005  3:59





                                               7.3 Functions of a Random Vector              205

                        Then

                                                      0        0             
                                                  y n      ···          y 1
                                                0     y n  ···  0      y 2
                                        ∂h(y)    .    .    .   .       .     
                                                                              
                                             =   .    . .  . .  . .    . .     .
                                                .
                                         ∂y                                   
                                                  0    0   ···  y n    y n−1
                                                                             
                                                                         n−1
                                                 −y n −y n ··· −y n 1 −  1  y j
                        It follows that

                                                             = y  .
                                                       ∂h(y)    n−1
                                                               n
                                                       ∂y
                          The distribution of X is absolutely continuous with density function

                                                     n
                                                                              + n
                                      p X (x) = exp −  x j , x = (x 1 ,..., x n ) ∈ (R ) .
                                                    j=1
                                                + n
                        Hence, we may take X 0 = (R ) and

                                                                      n−1

                                                                                    +
                                  Y 0 = g(X 0 ) = (y 1 ,..., y n−1 ) ∈ (0, 1) n−1 :  y j ≤ 1 × R .
                                                                      j=1
                        It follows that the distribution of Y is absolutely continuous with density
                                        p Y (y) = y n−1  exp(−y n ), y = (y 1 ,..., y n ) ∈ Y 0 .
                                                n
                          To obtain the density of (Y 1 ,..., Y n−1 ), as desired, we need to marginalize, eliminating
                        Y n . This density is therefore given by
                                                ∞

                                                  y n−1  exp(−y) dy = (n − 1)!,
                                               0

                                                                         n−1

                                    (y 1 ,..., y n−1 ) ∈ (y 1 ,..., y n−1 ) ∈ (0, 1) n−1 :  y j ≤ 1 .
                                                                         j=1
                        Hence, the density of (Y 1 ,..., Y n−1 )is uniform on the simplex in R n−1 .


                        Example 7.8 (Estimator for a beta distribution). As in Example 7.1, let X 1 ,..., X n denote
                        independent, identically distributed random variables, each with an absolutely continuous
                        distribution with density
                                                    θx θ−1 , 0 < x < 1

                        where θ> 0 and consider the statistic
                                                            n
                                                          1
                                                   Y 1 =−     log X j .
                                                          n
                                                            j=1
                          In order to use Theorem 7.2 we need to supplement Y 1 with functions Y 2 ,..., Y n
                        such that the transformation from (X 1 ,..., X n )to(Y 1 ,..., Y n ) satisfies the conditions of
                        Theorem 7.2.
   214   215   216   217   218   219   220   221   222   223   224