Page 221 - Elements of Distribution Theory
P. 221

P1: JZX
            052184472Xc07  CUNY148/Severini  May 24, 2005  3:59





                                               7.3 Functions of a Random Vector              207

                        it follows that

                                                             =|y 2 |.
                                                        ∂h(y)

                                                        ∂y
                        Here we must take X 0 = R × [(−∞, 0) ∪ (0, ∞)] so that Y 0 = g(X 0 ) = X 0 .
                          The density function of (X 1 , X 2 )isgiven by
                                                1       1    2  2              2
                                        p X (x) =  exp −  x + x 2  , (x 1 , x 2 ) ∈ R .
                                                           1
                                               2π       2
                        Hence, the density function of (Y 1 , Y 2 )isgiven by
                                               1        1      2     2             2
                                    p Y (y 1 , y 2 ) =  exp −  1 + y y 2  |y 2 |,  (y 1 , y 2 ) ∈ R
                                                              1
                                               2π       2
                        and the marginal density of Y 1 is given by
                               1     ∞         1      2     2    1     ∞          2
                                     |y 2 | exp −  1 + y y 2  dy 2 =   exp − 1 + y t dt
                                                     1
                                                                                  1
                               2π              2                 π  0
                                   −∞
                                                                     1
                                                              =         2  , −∞ < y 1 < ∞.
                                                                 π 1 + y
                                                                        1
                        This is the density of the standard Cauchy distribution.
                          The distributions considered in the following two examples occur frequently in the
                        statistical analysis of normally distributed data.

                        Example 7.10 (t-distribution). Let X 1 and X 2 denote independent random variables such
                        that X 1 has a standard normal distribution and X 2 has a chi-squared distribution with ν
                        degrees of freedom. The distribution of

                                                             X 1
                                                      Y 1 = √
                                                            (X 2 /ν)
                        is called the t-distribution with ν degrees of freedom. The density of this distribution may
                        be determined using Theorem 7.2.
                          Let Y 2 = X 2 . Writing X = (X 1 , X 2 ) and Y = (Y 1 , Y 2 ), X = h(Y) where h = (h 1 , h 2 ),
                                                       √
                                                      y 1 y 2
                                              h 1 (y) =  √  ,   h 2 (y) = y 2 .
                                                         ν
                        Hence,

                                                             √   √
                                                     ∂h(y)
                                                           =  y 2 / ν.
                                                      ∂y

                        The density of X is given by
                                      1          1  2    1    ν  −1     1
                             p X (x) = √  exp − x  1   ν     x 2 2  exp − x 2 , x ∈ R × (0, ∞).
                                                          ν
                                      (2π)       2    2 2              2
                                                          2
                          Hence, by Theorem 7.2, Y has density
                                        1      1    ν−1      1    2
                              p Y (y) = √    ν      y 2  2  exp −  y /ν + 1 y 2 , y ∈ R × (0, ∞).
                                                                1
                                       (2πν) 2 2    ν        2
                                                 2
   216   217   218   219   220   221   222   223   224   225   226