Page 291 - Elements of Distribution Theory
P. 291

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                                   9.5 Laplace’s Method                      277

                        so that u is a one-to-one function of y with
                                                    1  2
                                                     u = g(ˆ y) − g(y).
                                                    2
                        Then


                                                    udu =−g (y) dy.
                        Note that, since g is maximized at ˆ y and |g (y)| > 0 for all y  = ˆ y,it follows that g (y) < 0


                        for y > ˆ y and g (y) > 0 for y < ˆ y. Hence, u and g (y)have the same sign and


                                                               u

                                                        dy
                                                           =     .
                                                       du    g (y)


                          It follows that
                                b                             u(b)           n      u
                                h(y)exp{−n[g(ˆ y) − g(y)]} dy =  h(y(u)) exp − u 2       du

                              a                             u(a)             2    g (y(u))
                                                              u(b)        n
                                                                ¯
                                                         ≡      h(u)exp − u  2  du.
                                                            u(a)          2
                        Under the conditions on h and g,
                                                 ¯
                                                                  2
                                           ¯
                                                       ¯
                                           h(u) = h(0) + h (0)u + O(u )as u → 0
                        and, hence, by Corollary 9.1,
                                                         √
                                                              1
                                   u(b)        n          2   
            1
                                     ¯
                                    h(u)exp − u  2  du =   √  2 ¯ h(0) + O  3  as n →∞.
                                 u(a)          2             n           n 2
                          Hence, to complete the approximation we need to find
                                                             uh(y(u))
                                                   ¯
                                                   h(0) ≡ lim       .
                                                         u→0 g (y(u))

                        Note that u = 0if and only if y = ˆ y; hence,
                                                h(y(0)) = h(ˆ y), g (y(0)) = 0

                        and
                                                              u
                                              ¯
                                              h(0) = h(ˆ y) lim    ≡ h(ˆ y)L
                                                        u→0 g (y(u))

                        where
                                                               u
                                                    L = lim        .
                                                        u→0 g (y(u))

                          By L’Hospital’s rule,
                                                             1
                                                     L =          .
                                                         g (ˆ y)y (0)


                        We have seen that
                                                               u

                                                    y (u) =
                                                           −g (y(u))
   286   287   288   289   290   291   292   293   294   295   296