Page 17 -
P. 17

xvi    Contents

            3    Elements of Intersection Theory for Plane Curves ...............  50
            4    Multiple or Singular Points ..................................  52
            Appendix to Chapter 2: Factorial Rings and Elimination Theory .... 57
            1    Divisibility Properties of Factorial Rings . ......................  57
            2    Factorial Properties of Polynomial Rings . ......................  59
            3    Remarks on Valuations and Algebraic Curves . . . ................  60
            4    Resultant of Two Polynomials ................................  61

        3   Elliptic Curves and Their Isomorphisms ......................... 65
            1    The Group Law on a Nonsingular Cubic . ......................  65
            2    Normal Forms for Cubic Curves . . ............................  67
            3    The Discriminant and the Invariant j ...........................  70
            4    Isomorphism Classification in Characteristics  = 2, 3 .............  73
            5    Isomorphism Classification in Characteristic 3 . . ................  75
            6    Isomorphism Classification in Characteristic 2 . . ................  76
            7    Singular Cubic Curves ......................................  80
            8    Parameterization of Curves in Characteristic Unequal to 2 or 3.....  82

        4   Families of Elliptic Curves and Geometric Properties
            of Torsion Points ............................................. 85
            1    The Legendre Family .......................................  85
            2    Families of Curves with Points of Order 3: The Hessian Family ....  88
            3    The Jacobi Family ..........................................  91
            4    Tate’s Normal Form for a Cubic with a Torsion Point . . . ..........  92
            5    An Explicit 2-Isogeny .......................................  95
            6    Examples of Noncyclic Subgroups of Torsion Points . . . .......... 101

        5   Reduction mod p and Torsion Points ............................ 103
            1    Reduction mod p of Projective Space and Curves ................ 103
            2    Minimal Normal Forms for an Elliptic Curve . . . ................ 106
            3    Good Reduction of Elliptic Curves ............................ 109
            4    The Kernel of Reduction mod p and the p-Adic Filtration . . . ..... 111
            5    Torsion in Elliptic Curves over Q: Nagell–Lutz Theorem ......... 115
            6    Computability of Torsion Points on Elliptic Curves from Integrality
                 and Divisibility Properties of Coordinates ...................... 118
            7    Bad Reduction and Potentially Good Reduction . ................ 120
            8    Tate’s Theorem on Good Reduction over the Rational Numbers .... 122
        6   Proof of Mordell’s Finite Generation Theorem .................... 125
            1    A Condition for Finite Generation of an Abelian Group. .......... 125
                                  4
                                       4
            2    Fermat Descent and x + y = 1 . ............................ 127
            3    Finiteness of (E(Q) :2E(Q)) for E = E[a, b] . ................. 128
            4    Finiteness of the Index (E(k) :2E(k)) ......................... 129
            5    Quasilinear and Quasiquadratic Maps.......................... 132
            6    The General Notion of Height on Projective Space ............... 135
   12   13   14   15   16   17   18   19   20   21   22