Page 19 -
P. 19

xviii  Contents

        12  Endomorphisms of Elliptic Curves .............................. 233
            1    Isogenies and Division Points for Complex Tori ................. 233
            2    Symplectic Pairings on Lattices and Division Points . . . .......... 235
            3    Isogenies in the General Case ................................ 237
            4    Endomorphisms and Complex Multiplication . . . ................ 241
            5    The Tate Module of an Elliptic Curve .......................... 245
            6    Endomorphisms and the Tate Module .......................... 246
            7    Expansions Near the Origin and the Formal Group ............... 248
        13 Elliptic Curves over Finite Fields ............................... 253
            1    The Riemann Hypothesis for Elliptic Curves over a Finite Field .... 253
            2    Generalities on Zeta Functions of Curves over a Finite Field . . ..... 256
            3    Definition of Supersingular Elliptic Curves ..................... 259
            4    Number of Supersingular Elliptic Curves . ...................... 263
            5    Points of Order p and Supersingular Curves .................... 265
            6    The Endomorphism Algebra and Supersingular Curves . .......... 266
            7    Summary of Criteria for a Curve To Be Supersingular . . .......... 268
            8    Tate’s Description of Homomorphisms. . . ...................... 270
            9    Division Polynomial ........................................ 272
        14 Elliptic Curves over Local Fields ............................... 275
            1    The Canonical p-Adic Filtration on the Points of an Elliptic Curve
                 over a Local Field . ......................................... 275
            2    The N´ eron Minimal Model. .................................. 277
                                                           ˇ
            3    Galois Criterion of Good Reduction of N´ eron–Ogg–Safareviˇ c ..... 280
            4    Elliptic Curves over the Real Numbers . . . ...................... 284

        15 Elliptic Curves over Global Fields and  -Adic Representations ...... 291
            1    Minimal Discriminant Normal Cubic Forms
                 over a Dedekind Ring ....................................... 291
            2    Generalities on  -Adic Representations ........................ 293
                                                     ˇ
            3    Galois Representations and the N´ eron–Ogg–Safareviˇ c Criterion in
                 the Global Case ............................................ 296
            4    Ramification Properties of  -Adic Representations of Number
                       ˇ
                 Fields: Cebotarev’s Density Theorem .......................... 298
            5    Rationality Properties of Frobenius Elements in  -Adic
                 Representations: Variation of   ............................... 301
            6    Weight Properties of Frobenius Elements in  -Adic
                 Representations: Faltings’ Finiteness Theorem . . ................ 303
                                ˇ
            7    Tate’s Conjecture, Safareviˇ c’s Theorem, and Faltings’ Proof . . ..... 305
            8    Image of  -Adic Representations of Elliptic Curves: Serre’s Open
                 Image Theorem ............................................ 307
   14   15   16   17   18   19   20   21   22   23   24