Page 18 -
P. 18

Contents  xvii

            7    The Canonical Height and Norm on an Elliptic Curve . . .......... 137
            8    The Canonical Height on Projective Spaces over Global Fields .... 140
        7   Galois Cohomology and Isomorphism Classification
            of Elliptic Curves over Arbitrary Fields.......................... 143
            1    Galois Theory: Theorems of Dedekind and Artin ................ 143
            2    Group Actions on Sets and Groups ............................ 146
            3    Principal Homogeneous G-Sets and the First Cohomology Set
                  1
                 H (G, A) ................................................. 148
            4    Long Exact Sequence in G-Cohomology . ...................... 151
            5    Some Calculations with Galois Cohomology .................... 153
            6    Galois Cohomology Classification of Curves with Given j-Invariant 155

        8   Descent and Galois Cohomology ................................ 157
            1    Homogeneous Spaces over Elliptic Curves ..................... 157
            2    Primitive Descent Formalism ................................. 160
            3    Basic Descent Formalism . . .................................. 163
        9Elliptic and Hypergeometric Functions .......................... 167
            1    Quotients of the Complex Plane by Discrete Subgroups. .......... 167
            2    Generalities on Elliptic Functions . ............................ 169
            3    The Weierstrass ℘-Function .................................. 171
            4    The Differential Equation for ℘(z) ............................ 174
            5    Preliminaries on Hypergeometric Functions .................... 179
            6    Periods Associated with Elliptic Curves: Elliptic Integrals......... 183

        10 Theta Functions ............................................. 189
            1    Jacobi q-Parametrization: Application to Real Curves . . .......... 189
            2    Introduction to Theta Functions . . . ............................ 193
            3    Embeddings of a Torus by Theta Functions ..................... 195
            4    Relation Between Theta Functions and Elliptic Functions ......... 197
            5    The Tate Curve ............................................ 198
            6    Introduction to Tate’s Theory of p-Adic Theta Functions .......... 203

        11 Modular Functions ........................................... 209
            1    Isomorphism and Isogeny Classification of Complex Tori ......... 209
            2    Families of Elliptic Curves with Additional Structures . . .......... 211
            3    The Modular Curves X(N), X 1 (N), and X 0 (N) ................... 215
            4    Modular Functions ......................................... 220
            5    The L-Function of a Modular Form ............................ 222
            6    Elementary Properties of Euler Products . ...................... 224
            7    Modular Forms for   0 (N),   1 (N),and  (N) ................... 227
            8    Hecke Operators: New Forms ................................ 229
            9    Modular Polynomials and the Modular Equation ................ 230
   13   14   15   16   17   18   19   20   21   22   23