Page 20 -
P. 20

Contents   xix

        16  L-Function of an Elliptic Curve and Its Analytic Continuation ...... 309
            1    Remarks on Analytic Methods in Arithmetic .................... 309
            2    Zeta Functions of Curves over Q .............................. 310
            3    Hasse–Weil L-Function and the Functional Equation . . . .......... 312
            4    Classical Abelian L-Functions and Their Functional Equations..... 315
            5    Gr¨ ossencharacters and Hecke L-Functions ...................... 318
            6    Deuring’s Theorem on the L-Function of an Elliptic Curve with
                 Complex Multiplication . . . .................................. 321
            7    Eichler–Shimura Theory. . . .................................. 322
            8    The Modular Curve Conjecture . . . ............................ 324
        17 Remarks on the Birch and Swinnerton–Dyer Conjecture ........... 325
            1    The Conjecture Relating Rank and Order of Zero ................ 325
            2    Rank Conjecture for Curves with Complex Multiplication I, by
                 Coates and Wiles . . . ........................................ 326
            3    Rank Conjecture for Curves with Complex Multiplication II, by
                 Greenberg and Rohrlich . . . .................................. 327
            4    Rank Conjecture for Modular Curves by Gross and Zagier . . . ..... 328
            5    Goldfeld’s Work on the Class Number Problem and Its Relation to
                 the Birch and Swinnerton–Dyer Conjecture ..................... 328
            6    The Conjecture of Birch and Swinnerton–Dyer on the Leading Term 329
            7    Heegner Points and the Derivative of the L-function at s = 1, after
                 Gross and Zagier ........................................... 330
            8    Remarks On Postscript: October 1986 . . . ...................... 331

        18 Remarks on the Modular Elliptic Curves Conjecture and
            Fermat’s Last Theorem ....................................... 333
            1    Semistable Curves and Tate Modules .......................... 334
            2    The Frey Curve and the Reduction of Fermat Equation to Modular
                 Elliptic Curves over Q ...................................... 335
            3    Modular Elliptic Curves and the Hecke Algebra . ................ 336
            4    Hecke Algebras and Tate Modules of Modular Elliptic Curves ..... 338
            5    Special Properties of mod 3 Representations .................... 339
            6    Deformation Theory and  -Adic Representations ................ 339
            7    Properties of the Universal Deformation Ring . . . ................ 341
            8    Remarks on the Proof of the Opposite Inequality ................ 342
            9    Survey of the Nonsemistable Case of the Modular Curve Conjecture 342

        19  Higher Dimensional Analogs of Elliptic Curves:
            Calabi–Yau Varieties ......................................... 345
            1    Smooth Manifolds: Real Differential Geometry . ................ 347
            2    Complex Analytic Manifolds: Complex Differential Geometry..... 349
            3    K¨ ahler Manifolds........................................... 352
            4    Connections, Curvature, and Holonomy . . ...................... 356
            5    Projective Spaces, Characteristic Classes, and Curvature .......... 361
   15   16   17   18   19   20   21   22   23   24   25