Page 21 -
P. 21

xx     Contents

            6    Characterizations of Calabi–Yau Manifolds: First Examples . . ..... 366
            7    Examples of Calabi–Yau Varieties from Toric Geometry .......... 369
            8    Line Bundles and Divisors: Picard and N´ eron–Severi Groups . ..... 371
            9    Numerical Invariants of Surfaces . . ............................ 374
            10   Enriques Classification for Surfaces ........................... 377
            11   Introduction to K3 Surfaces .................................. 378
        20 Families of Elliptic Curves ..................................... 383
            1    Algebraic and Analytic Geometry . ............................ 384
            2    Morphisms Into Projective Spaces Determined by Line Bundles,
                 Divisors, and Linear Systems ................................. 387
            3    Fibrations Especially Surfaces Over Curves..................... 390
            4    Generalities on Elliptic Fibrations of Surfaces Over Curves . . ..... 392
            5    Elliptic K3 Surfaces ........................................ 395
            6    Fibrations of 3 Dimensional Calabi–Yau Varieties ............... 397
            7    Three Examples of Three Dimensional Calabi–Yau Hypersurfaces
                 in Weight Projective Four Space and Their Fibrings .............. 400

        Appendix I: Calabi–Yau Manifolds and String Theory ................. 403
            Stefan Theisen
            Why String Theory? ............................................. 403
            Basic Properties . . .............................................. 404
            String Theories in Ten Dimensions ................................. 406
            Compactification . . .............................................. 407
            Duality ........................................................ 409
            Summary . . .................................................... 411

        Appendix II: Elliptic Curves in Algorithmic Number Theory and
            Cryptography ............................................... 413
            Otto Forster
            1    Applications in Algorithmic Number Theory.................... 413
                 1.1   Factorization ........................................ 413
                 1.2   Deterministic Primality Tests .......................... 415
            2    Elliptic Curves in Cryptography . . ............................ 417
                 2.1   The Discrete Logarithm ............................... 417
                 2.2   Diffie–Hellman Key Exchange ......................... 417
                 2.3   Digital Signatures . . .................................. 418
                 2.4   Algorithms for the Discrete Logarithm . ................. 419
                 2.5   Counting the Number of Points . . ...................... 421
                 2.6   Schoof’s Algorithm .................................. 421
                 2.7   Elkies Primes ....................................... 423
            References ..................................................... 424
   16   17   18   19   20   21   22   23   24   25   26