Page 52 - Energy from Toxic Organic Waste for Heat and Power Generation
P. 52
40 Energy from Toxic Organic Waste for Heat and Power Generation
[12] Chandrasekharan M. Valorization of food processing by-products. United States: CRC
Press; 2016, ISBN: 1439848874.
[13] Del Valle M, Cámara M, Torija M-E. Chemical characterization of tomato pomace. J
Sci Food Agric 2006;86:1232–6.
[14] Kosmala M, Kolodziejczyk K, Zduńczyk Z, Juśkiewicz J, Boros D. Chemical com-
position of natural and polyphenol-free apple pomace and the effect of this dietary
ingredient on intestinal fermentation and serum lipid parameters in rats. J Agric Food
Chem 2011;59:9177–85.
[15] Zheng Y, Lee C, Yu C, Cheng Y, Simmons CW, Zhang R, Jenkins BM, Gheynst JS.
Ensilage and bioconversion of grape pomace into fuel ethanol. J Agric Food Chem
2012. https://doi.org/10.1021/jf303509v.
[16] Food and Agriculture Organization of the United Nations. Global food losses and food
waste—extent, causes and prevention; 2011. Rome.
[17] Silvennoinen K, Heikkila L, Katajajuuri J-M, Reinikainen A. Food waste volume and
origin: case studies in the Finnish food service sector. Waste Manag 2015;46:140–5.
[18] Betz A, Buchli J, Gobel C, Muller C. Food waste in the Swiss food service industry—
magnitude and potential for reduction. Waste Manag 2014;35:218–26.
[19] Buzby JC, Hodan FW, Hyman J. The estimated amount, value, and calories of post-
harvest food losses at the retail and consumer levels in the United States, EIB-121.
Washington, DC: U.S. Department of Agriculture, Economic Research Service; 2014.
[20] Chen H, Jiang W, Yang Y, Yang Y, Man X. State of the art on food waste research: a
bibliometrics study from 1997 to 2014. J Clean Prod 2017;140(2):840–6.
[21] Barik D, Murugan S. Assessment of sustainable biogas production from de-oiled seed cake
of karanja-an organic industrial waste from biodiesel industries. Fuel 2015;148:25–31.
[22] Amini HR, Reinhart DR. Regional prediction of long-term landfill gas to energy
potential. Waste Manag 2011;31(9):2020–6.
[23] Thyberg KL, Tonjes DJ. Drivers of food waste and their implications for sustainable
policy development. Resour Conserv Recycl 2016;106:110–23.
[24] Barik D, Murugan S. An artificial neural network and genetic algorithm optimized
model for biogas production from co-digestion of seed cake of Karanja and cattle dung.
Waste Biomass Valoriz 2015;6:1015–27.
[25] Kapdi SS, Vijay VK, Rajesh SK, Prasad R. Upgrading biogas for utilization as a vehicle
fuel. Asian J Energy Environ 2006;7:387–93.
[26] http://www.energy.ca.gov/research/renewable/biomass/anaerobic_digestion/index.html.
[27] Semblante GU, Hai FI, Huang X, Ball AS, Price WE, Nghiem LD. Trace organic con-
taminants in biosolids: impact of conventional wastewater and sludge processing tech-
nologies and emerging alternatives. J Hazard Mater 2015;300:1–17.
[28] Rao PV, Baral SS, Dey R, Mutnuri S. Biogas generation potential by anaerobic digestion
for sustainable energy development in India. Renew Sust Energ Rev 2010;14:2086–94.
[29] Yadvika S, Sreekrishnan TR, Kohli S, Rana V. Enhancement of biogas production from
solid substrates using different techniques—a review. Bioresour Technol 2004;95:1–10.
[30] Zheng Y, Pan Z, Zhang R, Mashad HME, Pan J, Jenkins BM. Anaerobic digestion of
saline creeping wild ryegrass for biogas production and pretreatment of particleboard
material. Bioresour Technol 2009;100:1582–8.
[31] Kalia AK, Singh SP. Performance evaluation of Pragati and KVIC biogas plant in hilly
regions. Biogas Forum 1996;64:6–10.
[32] Dermott BLM, Chalmers AD, Goodwin JAS. Ultrasonification as pre-treatment meth-
od for the enhancement of the psychrophilic anaerobic digestion of aquaculture efflu-
ents. Environ Technol 2001;22:823–30.
[33] Farland MJM. Biosolids engineering. United States: McGraw Hill Professional; 2000.
[34] Deublein D, Steinhauser A. Biogas from waste and renewable resources, dieter dou-
blein. Germany: Wiley-VCH; 2008.
[35] Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotech-
nol 2010;85:849–60.