Page 249 - Engineered Interfaces in Fiber Reinforced Composites
P. 249

230                Engineered interfaces in fiber reinforced composites

                   Chawla, K.K., Ferber, M.K.,  Venkatesh, R. and Xu, Z.R. (1993). Interface engineering in alurninaiglass
                      composites, Mater. Sci. Eng. A  162, 3544.
                    Chawla, K.K. (1993). Ceramic Matrix Composites. Chapman & Hall, London. pp. 162-194.
                    Chen, R. and Li, Z. (1993). A study of silica coatings on the surface of carbon or graphite fiber and the
                      interface in a carbon/magnesium composite.  Composites Sci. Technol. 49, 357-362.
                    Cheng, T.H.,  Jones, F.R.  and Wang,  D.  (1992). Silane interactions with glass fibers and resins at the
                      interface  in  composite materials.  In  Proc.  Fiber  reinforced  Composites, FRPP2. The Plastics  and
                      Rubber Institutes, UK. Paper 19.
                    Cheng, T.H.,  Jones,  F.R.  and Wang,  D.  (1993). Effect  of fiber conditioning on  the  interfacial  shear
                      strength of glass-fiber  composites. Composites Sci. Technol. 48, 89-96.
                    Chiang, C.H., Ishida, H. and Koenig, J.L. (1980). The structure of y-aminopropyl-triethoxysilane on glass
                      surfaces. J. Colloid. Interface Sci. 74, 39&404.
                    Chiang, C.H. and Koenig, J.L. (1981). Fourier transform infrared spectroscopic study of the absorption
                      of multiple aminosilane coupling agents on glass surfaces. J. Colloid. Interjace Sci. 83, 361-370.
                    Cho, C.R. and Jang, J. (1990). Adhesion of ultrasonic high modulus polyethylene fiber-epoxy composite
                      interfaces. In Controlled Interphases in Composite Materials. Prod. ICCI-III, (H. Ishida ed.), Elsevier
                      Sci. Pub.,  New York, pp. 97-107.
                    Chua,  P.S.,  Dai,  S.R. and  Piggott,  M.R.  (1992a). Mechanical  properties of  thc  glass fiber-polyester
                      interphase. Part  1 - Effects due to silane. J. Mater. Sci. 27, 913-918.
                    Chua,  P.S.,  Dai,  S.R. and  Piggott, M.R.  (1992b). Mechanical  properties  of  the  glass fiber-polyester
                      interphase.  Part 2 - Effcct of water on debonding. J. Mater. Sci. 27, 919-924.
                    Chua, P.S. and Piggott, M.R. (1992). Mechanical properties of the glass fiber-polyester interphase. Part 3
                      - Effect of water on interface pressure and friction. J. Mafer. Sci. 27, 925-929.
                    Clark, H.A. and Plueddemann, E.P. (1963). Bonding of silanc coupling agents in glass-reinforced plastics,
                      Modern Plastics 40.  133-138,  195196.
                    Clyne, T.W. and Withers, P.J. (1993). An introduction to Metal Matri.x Composites. Cambridge University
                      Press, Cambridge, UK. Ch. 6, pp.  166217.
                    Culler, S.R.,  Ishida, H. and Koenig, J.L. (1986). The silane interphase of composites: effects of process
                      condition on y-aminopropyl  triethoxysilane.  Polym. Composites 7, 23 1-238.
                    Dagli, G., Sung, N.H.  (1989). Properties of carbon/graphite fibers modified by  plasma polymerization.
                      Polym. Composites 10, 109-1  16.
                    Dauksys, R.J. (1973). Graphite fiber treatments which affect fiber surface morphology and epoxy bonding
                      characteristics. J. Adhesion 5, 21 1-244.
                    DeVincent,  S.M. (1991).  Development  of  graphite/copper composites utilizing engineered  interfaces.
                      NASA CR-187143.
                    DeVincent, S.M. and Michal, G.M. (1993a). Reaction layer formation at the graphite/copper-chromium
                      alloy interface. Metal.  Trans A MA, 5340.
                    DeVincent,  S.M. and  Michal,  G.M. (1993b).  Improvement  of  thermal  and  mechanical  properties  of
                      graphite/copper composite through interracial modification. J. Mater. Eng. Performance (JMEPEG)
                      2, 323-332.
                    DeBolt, H.E. (1982). Boron and other high strength, high modulus, low density filamentary reinforcing
                      agents.  In  Handbook of  Composites, (G. Lubin  cd.), Van Nostrand  Reinhold,  New York, pp.  171-
                      195.
                    Delmonte,  J.  (1981).  Surface treatments of  carbon/graphite fibers and their  effect  on  composites.  In
                      Technology of Carbon and Graphite Fiber Composites. Van Nostrand Reinhold, New York, pp.  171-
                      197.
                    DiCarlo, J.A. (1988). Creep of chemically vapor deposited Sic fibers. J. Mater. Sci. 21, 217-224.
                    Diwanji, A.P. and Hall, I.M. (1992). Fiber and fiber-surface treatment effects in carbon-aluminum metal
                      matrix composites. J. Mater. Sci. 27, 2093-2100.
                    Dobb,  M.G.,  Johnson,  D.J.  and  Saville,  B.P.  (1977).  Supramolecular structure  of  a  high  modulus
                      polyaromatic fiber (Kevlar 49). J. Polyrn. Sci., Polym. Phys. Ed. 15, 2201-221  1.
                    Donnellan,  M.E.,  Frazier,  W.E.  (1991).  In  Proc.  ICCM-8.  Composites:  Design,  Manufacture  and
                      Applications. (S.W. Tsai and G.S. Springer, eds.), SAMPE Pub. Paper 25B.
   244   245   246   247   248   249   250   251   252   253   254