Page 343 - Engineered Interfaces in Fiber Reinforced Composites
P. 343

324               Engineered interfaces in fiber reinforced composites

                    Kim, J.K., Zhou, L.M. Bryan, S.J. and Mai. Y.W. (1994b). Effect of fiber volume fraction on the stress
                      transfer in fiber pull-out tests. Composites 25, 47M75.
                    Kim, J.K.,  Lu,  S.V. and Mai, Y.W. (1994~). Interfacial  debonding and fiber  pull-out stresses: Part  IV.
                      Influence of interface layer on the stress transfer. J. Muter. Sei. 29, 554561.
                    Kim,  K.S. and  Hahn,  H.T. (1989).  Residual  stress development  during processing  of  graphite/epoxy
                      composites.  Composites Sei. Technol. 36, 121-132.
                    Kim,  K.S.,  Hahn,  H.T.  and  Croman,  R.B.  (1989).  The effect  of  cooling rate  on  residual  stress in  a
                      thermoplastic composite. J. Composites Teehnol. Res. 11, 47-52.
                    Kinloch,  A.J.  (1993).  Toughened  Plastics  I:  Science  and  Engineering.  American  Chemical  Society,
                      Washington  D.C.
                    Koufopoulos T. and  Theocaris  P.S.  (1969).  Shrinkage  stresses  in  two-phase  materials. J.  Composite
                      Muter. 3, 308-320.
                    Kuntz,  M.,  Meier,  B.  and Grathwohl, G. (1993).  Residual stresses in fiber-reinforced ceramics due to
                      thermal expansion mismatch. J. Am. Cerum. Soc. 76, 2607-2612.
                    Labronici,  M.  and  Ishida,  H.  (1994).  Toughening  composites  by  fiber  coating:  A  review.  Composite
                      Interfaces  2,  199-234.
                    Lam P.K. and Piggott M.R. (1989a). The durability of controlled matrix shrinkage composites: Part  1.
                      Mcchanical properties of  resin matrices and their composites. J. Muter. Sei. 24, 4068-4075.
                    Lam P.K. and Piggott  M.R. (1989b).  The durability of controlled matrix shrinkage composites: Part 2.
                      Properties of carbon fiber-epoxy  copolymer pultrusion. J. Muter. Sei. 24, 44274431.
                    Lam P.K.  and Piggott M.R. (1990). The durability of controlled matrix  shrinkage composites:  part 3.
                      Mcasurcmcnt of damage during fatigue. J. Muter. Sci. 25,  1197-1202.
                    Lhotellier,  F.C.  and  Brinson,  H.F.  (1988).  Matrix fiber  stress  transfer  in  composite  materials:  elasto-
                      plastic model with an interphase layer. Composite Structures IO,  281-301.
                    Lim J.T.,  Piggott  M.R.  and  Bailey W.J.  (1984). Toughness  of fiber composites with controlled matrix
                      shrinkage. SAMPE Quarterly  15, 25-30.
                    Low, B.Y.,  Gardener, S.D., Pittman, C.U. and Hackett, R.M. (1994). A micromechanical characteriza-
                      tion of graphite fiber/epoxy composites containing a heterogeneous interphase region. Composites Sei.
                      Technol. 52, 589-606.
                    Low,  B.Y., Anderson, K.L.,  Vincent,  M., Gardener, S.D., Pittman, C.U. and  Hackett, R.M.  (1995a).
                      Toughened  carbon  fiber/epoxy  composites:  the  relative  influence  of  an elastomer  interphase  and
                      elastomer dispersed in the matrix. Composites Eng. 5, 437457.
                    Low,  B.Y.,  Gardener, S.D.,  Pittman, C.U. and Hackett, R.M. (1995b). A  micromechanical  character-
                      ization  of  residual  thermal  stresses  in  carbon  fiber/epoxy  composites  containing  a  non-uniform
                      interphase region. Composites Eng. 5, 375-396.
                    Mai Y.W. (1983). Controlled  interfacial bonding on the strength and fracture toughness of Kevlar and
                      carbon fiber composites. J. Mater. Sci. Lett. 2, 723-725.
                    Mai Y.W.  (1988).  Controlled  interfacial  bonding  on the  residual  strength  of  fatigue-damaged  carbon
                      fiber-epoxy composites. J. Mater. Sei. Lett. 7, 581-582.
                    Mai  Y.W.  and  Castino  F.  (1984).  Fracture  toughness  of  Kevlar-epoxy  composites  with  controlled
                      interfacial bonding. J. Muter. Sci. 19, 1638-1655.
                    Mai Y.W. and Castino F. (1985). The debonding and pull-out properties of coated Kevlar fibers from an
                      epoxy resin matrix. .I. Muter. Sei. Lett. 4, 505-508.
                    Mai Y.W., Cotterell B. and Lord R. (1982a). On fiber composites with intermittent interlaminar bonding.
                      In Proc. ICCM-IV, Progress in science and Engineering of Composites (T. Hayashi et al., eds.), North-
                      Holland Pub. Amsterdam, pp. 271-277.
                    Mai  Y.W.,  Hakeem  M.  and  Cotterell  B.  (1982b). Imparting fracture resistance  to  cement  mortar  by
                      intermittent interlaminar bonding.  Cement Concrete Res.  12, 661-663.
                    Marloff,  R.H.  and  Daniel,  I.M.  (1969).  Three  dimensional  photoelastic analysis  of  a  fiber  reinforced
                      composite model. Exp. Meeh. 9, 15&162.
                    Marom, G. and Arridge, G.C. (1976). Stress concentration and transverse modes of failure in composites
                      with a soft fiber-matrix  interlayer.  Mater. Sei. Eng. 23, 23-32.
                    Marston T.U., Atkins A.G. and Felbeck  D.K. (1974). Interfacial  fracture energy and the toughness of
                      composite. J. Muter. Sei. 9, 447455.
                    Mascia, L. (I 989). Thermoplastics: Materials Engineering. Elsevier Appl. Sci., London.
   338   339   340   341   342   343   344   345   346   347   348