Page 171 - Engineering Electromagnetics, 8th Edition
P. 171

CHAPTER 6  Capacitance              153

                                     y


                                      V = 0
                                                     Equivalent
                                                     line charge

                                                                        x
                                                  b = 5
                                         h = 13         Center, x = 13,
                                                        y = 0, V = 100
                                                 Center, x = 18, y = 0
                                                   radius = 13.42
                                                     V = 50

                                    Figure 6.5 A numerical example of the
                                    capacitance, linear charge density, position of an
                                    equivalent line charge, and characteristics of the
                                    mid-equipotential surface for a cylindrical
                                    conductor of 5 m radius at a potential of 100 V,
                                    parallel to and 13 m from a conducting plane at
                                    zero potential.


                         We may also identify the cylinder representing the 50 V equipotential surface by
                     finding new values for K 1 , h, and b.We first use Eq. (12) to obtain
                                  K 1 = e  4π V 1 /ρ L  = e 4π×8.854×10 −12 ×50/3.46×10 −9  = 5.00

                     Then the new radius is
                                             √            √
                                           2a K 1   2 × 12 5
                                       b =        =          = 13.42 m
                                           K 1 − 1    5 − 1
                     and the corresponding value of h becomes
                                              K 1 + 1    5 + 1
                                         h = a       = 12     = 18 m
                                              K 1 − 1    5 − 1
                     This cylinder is shown in color in Figure 6.5.
                         The electric field intensity can be found by taking the gradient of the potential
                     field, as given by Eq. (11),
                                                             2   2
                                                  ρ L  (x + a) + y
                                          E =−∇      ln
                                                             2
                                                  4π   (x − a) + y 2
                     Thus,

                                      ρ L  2(x + a)a x + 2ya y  2(x − a)a x + 2ya y
                                E =−                      −
                                                                     2
                                                  2
                                      4π    (x + a) + y 2      (x − a) + y 2
                     and

                                           ρ L (x + a)a x + ya y  (x − a)a x + ya y
                                D =  E =−                   −
                                                                      2
                                                      2
                                           2π   (x + a) + y 2   (x − a) + y 2
   166   167   168   169   170   171   172   173   174   175   176