Page 99 - Entrophy Analysis in Thermal Engineering Systems
P. 99

92                               Entropy Analysis in Thermal Engineering Systems



                                                         γ 1

                                         1 γ          CR
                                  ð 1 CR    Þ η T R
                                               exp     η
                            _ W net
                       η ¼      ¼                        com          (7.27)
                            _                     γ 1   1
                                               CR
                           Q
                             H
                                       T R  1
                                                  η
                                                   com
          Fig. 7.4 shows the normalized power and the efficiency of the Otto cycle
          varying with the compression ratio at γ ¼1.4, η com ¼0.85 and η exp ¼0.90.
          Like the Brayton cycle, the maximum power design is different from that
          of the maximum efficiency. The optimum compression ratio leading to a
          maximum power output happens to be less than that which yields a maxi-
          mum thermal efficiency. Solving ∂ _ W net =∂CR ¼ 0 and ∂η/∂CR¼0, one
          obtains
                                                     1

                                                    ð
                             ð                      2 γ 1Þ            (7.28)
                                      ¼ η η T R
                                          com exp
                              CRÞ _ W max
                                     "      ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #
                                         p
                                                         1
                                      α     α βα 1Þ
                                                ð
                           ð CRÞ   ¼                    γ 1           (7.29)
                                            α 1
                                η max
          where α and β are already defined in Eqs. (7.12) and (7.13).
             A substitution of Eq. (7.28) into Eq. (7.26) leads to an expression for the
          maximum power.























          Fig. 7.4 Variation of the normalized power output and the thermal efficiency of the irre-
          versible Otto cycle with the compression ratio, γ ¼1.4, η com ¼0.85, and η exp ¼0.90.
   94   95   96   97   98   99   100   101   102   103   104