Page 167 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 167

152   Principles and Methods

        Adsorption
        As it has been previously discussed, the chemical reactivity of nanopar-
        ticle surface sites is an important issue for many industrial applications
        as well as for environmental concerns. Chemical reactivity is strongly
        influenced by the large ratio of surface atoms to nonsurface atoms.
        Adsorption properties of nanoparticles from an environmental per-
        spective are discussed in Chapter 10. The adsorption mechanisms of mol-
        ecules or atoms on the nanoparticle surface can be described using many
        of the techniques previously covered and using other techniques such
        as infrared spectroscopy and NMR.


        References
        Auffan M., Decome L., Rose J., Orsiere T., Demeo M., Briois V., Chaneac C., Olivi L., Berge-
          Lefranc J.-L., Botta A., Wiesner M. R., and Bottero J.-Y. (2006) In Vitro Interactions
          between DMSA-Coated Maghemite Nanoparticles and Human Fibroblasts:  A
          Physicochemical and Cyto-Genotoxical Study. Environmental Science and Technology.
        Bazin D., Sayers D., Rehr J. J., and Mottet C. (1997) Numerical Simulation of the Platinum
          LIII Edge White Line Relative to Nanometer Scale Clusters. Journal of Physical
          Chemistry B.(101), 5332–5336.
        Berne B. J. and Pecora R. (1976) Dynamic Light Scattering. Wiley.
        Berne W. (1996) Light Scattering: Principles and Development.
        Bottero J., Manceau A., Villieras F., and Tchoubar D. (1994) Structure and Mechanisms
          of Formation of FeOOH(Cl) Polymers. Langmuir 10(1), 316–319.
        Chemseddine A., Fieber-Erdmann M., Holub-Krappe E., and Boulmaaz S. (1997) XAFS
          Study of Functionalized Nanoclusters and Nanocluster Assemblies. Zeitschrift für
          Physik D Atoms, Molecules and Clusters 40(1–4), 566–569.
        Chemseddine A. M., Moritz T. (1999) European Journal of Inorganic Chemistry 2, 235.
        Choi H. C., Jung Y. M., and Kim S. B. (2005) Size Effects in the Raman Spectra of TiO2
          Nanoparticles. Vibrational Spectroscopy 37, 33–38.
        Combes J.-M., Manceau A., Calas G., and Bottero J.-Y. (1989) Formation of Ferric Oxides
          from Aqueous Solutions: A Polyhedral Approach by X-ray Absorption Spectroscopy. 1.
          Hydrolysis and Formation of Ferric Gels. Geochimica and Cosmochimica Acta 53(3),
          583–594.
        Denaix L., Lamy I., and Bottero J.-Y. (1999) Structure and Affinity Towards Cd2 , Cu2 ,
          Pb2+ of Synthetic Colloidal Amorphous Aluminosilicates and Their Precursors. Colloids
          and Surfaces A: Physicochemical and Engineering Aspects (158), 315–325.
        Fernandez-Garcia M., Martinez-Arias A., Hanson J. C., and Rodriguez J. A. (2004)
          Nanostructured Oxides in Chemistry: Characterization and Properties. Chemical
          Review 104, 4063–4104.
        Ferraro J. R. and Nakamoto K. (1994) Introductory Raman Spectroscopy. Academic Press.
        Fontaine A. (1993) Interactions of X-rays with Matter: X-ray Absorption Spectroscopy. In
          Neutron and Synchrotron Radiation for Condensed Matter Studies, (eds. Baruchel J.,
          Itodeau J.-L., Lehmann M. S., Regnard J. R., and Schlenker C.). Les Editions de
          Physique—Springer Verlag.
        Frenkel A. I., Hills C. W., and Nuzzo R. G. (2001) A View from the Inside: Complexity in
          the Atomic Scale Ordering of Supported Metal.
        Nanoparticles, Dextran and Albumin Derivatised Iron Oxide. The Journal of Physical
          Chemistry B 105(51), 12689–12703.
        Glatter O. and Kratky O. (1982) Small-Angle X-ray Scattering. London: Academic Press.
        Greegor R. and Lytle F. (1980) Morphology of Supported Metal-Clusters—Determination
          by EXAFS and Chemisorption. Journal of Catalysis 63(2), 476–486.
        Helmerich A., Raether F., Peter D., and Bertagnoly H. (1994) Structural Studies on an
          ORMOCER System Containing Zirconium. Journal of Material Science 29, 1388–1389.
   162   163   164   165   166   167   168   169   170   171   172