Page 172 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 172

Reactive Oxygen Species Generation on Nanoparticulate Material  157

        TABLE 5.1 Standard State Reduction Potentials of Important Oxygen Species Where
        T = 298.15 K, P = 1.0 atm and All Concentrations and Activities (by Definition) Are
        Constant at 1.0 M
                                                                       1
        Oxygen species half-reaction     EH (pH 0)           G/n (kJ mol )
                     2
               1
        O 2 1  4 H 1  4 e   m  2 H 2 O     1.23                118.56
               1     2
        O 2 1  2 H 1  2 e   m   H 2 O 2    0.70                67.47
        3     2        2.
         O 2 1 e   m  O 2                  0.16                15.42
        3      1   2         .             0.12                 11.57
         O 2 1 H 1 e   m  HO 2
        1     2        2.
         O 2 1 e   m  O 2                  0.83                80.01
          1   2
        O 2 1 e   m  O 2                   3.20                308.45
        .      2      2
         OH 1 e   m OH                     1.90                183.14
        .      1   2
         OH 1 H 1 e    m    H 2 O          2.72                262.19
          2.  1   2         2
        O 1 H 1 e      m    HO             1.77                170.61
        HO 2 1 e 2  4 m  HO 2 2            0.75                72.29
               1   2
        HO 2 1 H 1 e   m  H 2 O 2          1.50                144.59
                 1
                      2
        H 2 O 2 1 2 H 1 2 e   m   2 H 2 O   1.77               170.61
                         .
               2
        H 2 O 2 1 e   m    OH 1 H 2 O      0.72                69.40
               1
                     2
        O 3 1 2 H 1 2 e   m   O 2 1 H 2 O   2.08               200.50
             2        2.
        O 3 1 e   m  O 3                   1.00                96.39
                                #
                  2
              1
        O 3 1 H 1 e   m   O 2 1 OH         1.34                129.17
        For an overall redox reaction, coupling the half-reactions for an oxidant
        with a reductant, we can write the following simple equation:
                                                                       (4)
                            Ox 1 1 Red 2 5 Red 1 1 Ox 2
        The corresponding Nernst equation can be expressed in terms of the
        overall redox potential, E rxn , for a given set of nonstandard conditions
        as follows:
                                     2.3RT     [Red ][Ox 2 ]
                                                   1
                                  0
                         E rxn  5 E H   2   log                        (5)
                                       nF      [Ox ][Red ]
                                                        2
                                                  1
        The highest occupied molecular orbitals (HOMO) of ground state oxygen
        contain unpaired electrons with parallel spins (Figure 5.1). The paral-
        lel spins are characterized by triplet signal response in an applied mag-
        netic field, while anti-parallel spins have a characteristic singlet
        response in a magnetic field.
          As a consequence of the unpaired, parallel spins in the ground-state
             3 2
         3
        ( O  s   g d ) oxygen is paramagnetic. Thus, molecular oxygen (i.e., dioxygen)
           2
        has a triplet spin state. However, most ground molecules in the ground elec-
        tronic state are spin-paired and singlet state. Given “Woodward-Hoffmann”
   167   168   169   170   171   172   173   174   175   176   177