Page 156 - Essentials of physical chemistry
P. 156

118                                                  Essentials of Physical Chemistry






















            FIGURE 6.6  An iodine enhanced fingerprint. (Photo provided courtesy of Forensics Source 2010.) Thanks to
            Eric Schellhorn, director of marketing, and Floyd Wilson who developed a print on an outside rough surface as
            a severe demonstration as requested. Close examination reveals clear print lines suitable for computer analysis.
            See Ref. [3] for additional examples.


            Recall


                          qU         qU         1         qU      qU      qU     qV
                                          dV                                         :
                          qT  V      qV  T     dT   P     qT  P   qT  V   qV  T  qT  P
                   dU ¼        dT þ                   )       ¼        þ
            Then


                             qU      qU    qV        qV      qU      qV     qU
                                                þ P                              þ P :
                             qT      qV    qT        qT      qT      qT     qV
                (C P   C V ) ¼    þ                               ¼
                                 V       T     P         P      V        P      T

                                      qU            qV      R
            Recall that for the ideal gas  ¼ 0 and       ¼       , which lead to C P   C V ¼ R.
                                      qV            qT      P
                                          T             P      n¼1
            However, this time we use one of the HUGA equations:

                                                      qU        qS
                               dU ¼ TdS   PdV   and        ¼ T        P:
                                                      qV        qV
                                                          T

                                     qV       qS               qV      qS
                                           T                        T        :
                                     qT       qV               qT      qV
                         (C P   C V ) ¼              P þ P ¼
                                         P        T               P        T
            That was pretty easy, but now we need another equation from the HUGA set dA ¼ SdT   PdV

                 qS      qP                   qV     qP
            and       ¼       ,so (C P   C V ) ¼   T      .
                 qV      qT                   qT     qT
                     T       V                    P      V
            We recognize these quantities as things we can measure in a laboratory but not the most convenient
            expression for routine use. Next, we need a general expression of the volume differential (and set it
            to zero for a new relationship): dV ¼ 0

                                                                      qV

                                  qV         qV            qP         qT  P
                                                 dP ¼ 0,                  :
                                  qT         qP            qT        qV
                           dV ¼        dT þ                     ¼
                                      P         T              V
                                                                      qP  T
   151   152   153   154   155   156   157   158   159   160   161