Page 218 - Essentials of physical chemistry
P. 218

180                                                  Essentials of Physical Chemistry

                                                              þ
            (20) 11. Consider data for the reaction: H 2 O 2 þ Na 2 S 2 O 3   [H ] ) 2H 2 O þ Na 2 S 4 O 6

                 Time (min)  16        36        43        52        at T ¼ 0, [H 2 O 2 ] ¼ 0.0368
                 [(S 2 O 3 ) ]  0.01030  0.00518  0.00416  0.00313   and [(S 2 O 3 ) ] ¼ 0.0204
                     2
                                                                             2
                   How long will it take until [(S 2 O 3 ) ] ¼ 0.0030?     (Answer: 53.3 min)
                                              2

            BIBLIOGRAPHY
            Houston, P. L., Chemical Kinetics and Reaction Dynamics, McGraw Hill, Boston, MA, 2001.
            Lesk, A. M., Introduction to Protein Architecture, Oxford University Press, London, 2000.


            REFERENCES
              1. Moore, J. W. and R. G. Pearson, Kinetics and Mechanism, 3rd Edn., John Wiley and Sons, New York,
                1981.
              2. Eyring, H., H. Gershinowitz, and C. E. Sun, Potential energy surface for linear H 3 (and why the axes are
                not at 908), J. Chem. Phys., 3, 786 (1935).
              3. Hirschfelder, J., H. Eyring, and B. Topley, Reactions involving hydrogen molecules and atoms, J. Chem.
                Phys., 4, 170 (1936).
              4. Truhlar, D. G. and R. E. Wyatt, History of H 3 Kinetics, Ann. Rev. Phys. Chem., 27, 1 (1976).
              5. Brown, H. C. and M. Borkowski, The effect of ring size on the rate of solvolysis of the 1-Chloro-1-
                methylcycloalkanes, J. Am. Chem Soc., 74, 1894 (1952).
              6. Bodenstein, M. and S. C. Lind., Geschwindigkeit der Bildung des Bromwasserstoffs aus seinen
                Elementen, Z. Phys. Chem., 57, 168 (1906).
              7. Christiansen, J. A., On the reaction between hydrogen and bromine, K. Dan, Vidensk. Selsk. Mat.-Fys.
                Medd., 1, 14 (1919).
              8. Herzfeld, K. F., Zur Theorie der Reaktionsgeschwindigkeiten in Gasen, Ann. Phys., 59, 635 (1919).
              9. Polanyi, M., Causes of forces of adsorption. Z. Electrochem., 26, 49 (1920).
             10. Rice, F. O. and K. F. Herzfeld, The thermal decomposition of organic compounds from the standpoint of
                free radicals. VI. The mechanism of some chain reactions, J. Am. Chem. Soc., 56, 284 (1934).
             11. Castellan, G. W., Physical Chemistry, 3rd Edn., Addison-Wesley Publishing Co., Reading, MA, 1983,
                p. 844, problem 32.32.
             12. Michaelis, L. and M. L. Menten, Biochemische Zeitschrift, 49, 333 (1913).
             13. Lumry, R., E. L. Smith, and R. R. Glantz, Kinetics of carboxypeptidase action. I. Effect of various
                extrinsic factors on kinetic parameters, J. Am. Chem. Soc., 73, 4330 (1951).
             14. Tinoco, I., K. Sauer, and J. C. Wang, Physical Chemistry, Principles and Applications in Biological
                Sciences, 3rd Edn., Prentice Hall, Upper Saddle River, NJ, 1995, p. 429.
             15. Lineweaver, H. and D. Burk, The determination of enzyme dissociation constants, J. Am. Chem. Soc., 56,
                658 (1934).
             16. Kimball, J., Enzyme kinetics, http:==users.rcn.com=jkimball.ma.ultranet=BiologyPages=E=EnzymeKi-
                netics.html Special thanks to Prof. John Kimball of Harvard for contributing the data and graphs related
                to the reaction of o-diphenol oxidase (catechol oxidase) with catechol. More is available from his site at
                Kimball’s Biology Pages, http:==biology-pages.info
   213   214   215   216   217   218   219   220   221   222   223