Page 55 - Essentials of physical chemistry
P. 55

Ideal and Real Gas Behavior                                                  17

                                   10


                                    8



                                    6

                                  (P/P C )  4                      P H C
                                                                   P
                                                                   P L
                                    2



                                    0
                                      0  0.5  1  1.5  2  2.5  3  3.5

                                   –2
                                                (V/V )
                                                   c
            FIGURE 1.7 Selected isotherms of a van der Waals gas. P C ¼ the isotherm at the critical pressure, P H ¼ the
            isotherm above the critical pressure, and P L ¼ the isotherm below the critical pressure. (Courtesy of Prof. Carl
            Trindle, Chemistry Department of the University of Virginia.)


              First solve the van der Waals equation for P and assume n ¼ 1, then take the first and second
            derivatives of the pressure with respect to the volume at constant T ¼ T c .
                                                   RT     a
                                           1: P ¼          2
                                                 (V   b)  V

                                          qP       RT c    2a
                                      2:       ¼         þ   ¼ 0
                                          qV     (V c   b) 2  V 3
                                              T             c
                                           2
                                         q P       2RT c   6a
                                      3:       ¼              ¼ 0
                                         qV 2    (V c   b) 3  V 4
                                              T             c
            Note we have added ‘‘c’’ subscripts in the derivative equations because they are only true (¼0) at the
            critical point. Rearrange Equation (2) and substitute it into Equation (3).


                                          2a             2    2a     6a
                                  RT c
                                (V c   b) 2  ¼  V c 3  which )  (V c   b) V c 3  ¼  V c 4
            so

                                     4aV c
                                          ¼ 6a   and  4V c ¼ 6(V c   b):
                                   (V c   b)
            Then 4V c ¼ 6V c   6b and 6V c   4V c ¼ 6b ¼ 2V c so finally V c ¼ 3b and b ¼ V c =3. This important
            result means that the ‘‘b’’ parameter of the van der Waals equation can be obtained as (1=3) of the
            volume V on the V-axis directly under the critical point. Now let us look for ‘‘a.’’ So far we have
            used Equation (3) so now go back to (2) and use the ‘‘b’’ value.
   50   51   52   53   54   55   56   57   58   59   60