Page 160 - Fair, Geyer, and Okun's Water and wastewater engineering : water supply and wastewater removal
P. 160

JWCL344_ch04_118-153.qxd  8/2/10  9:18 PM  Page 122







                    122  Chapter 4  Quantities of Water and Wastewater Flows
                                             Three related equations apply closely to characteristic portions of this growth curve:
                                         (a) a first-order progression for the terminal arc ec of Fig. 4.1, (b) a logarithmic or geometric
                                         progression for the initial arc ad, and (c) an arithmetic progression for the transitional
                                         intercept, de, or:
                                            For arc cc:                dy>dt   k(L   y)                       (4.2)
                                            For arc ad:                dy>dt   ky                             (4.3)
                                            For arc de:                dy>dt   k                              (4.4)

                                             If it is assumed that the initial value of k, namely k , decreases in magnitude with time
                                                                                     0
                                          or population growth rather than remaining constant, k can be assigned the following
                                          value:
                                                                       k   k >(l   nk t)                      (4.5)
                                                                           0
                                                                                  0
                                         in which n, as a coefficient of retardance, adds a useful concept to Eqs. 4.2 to 4.4.
                                             On integrating Eqs. 4.1 to 4.4 between the limits y   y at t   0 and y   y at t   t for
                                                                                         0
                                         unchanging k values, they change as shown next.
                                             For autocatalytic first-order progression (arc ac in Fig. 4.1):
                                                             ln [(L   y)>y]   ln[(L    y )>y ]   kLt
                                                                                   0
                                                                                      0
                                         or
                                                               y   L>{1   [(L   y )>y ] exp(–kLt)}            (4.6)
                                                                               0
                                                                                  0
                                             For first-order progression without catalysis (arc ec in Fig. 4.1):
                                                                  ln[(L –  y)>(L   y )]   kt
                                                                                 0
                                         or
                                                                  y   L   (L    y ) exp( kt)                  (4.7)
                                                                               0
                                             For geometric progression (arc ad in Fig. 4.1):
                                                                        ln(y>y )   kt
                                                                             0
                                          or
                                                                        y   y exp(kt)                         (4.8)
                                                                            0
                                             For arithmetic progression (arc de in Fig. 4.1):

                                                                         y   y 0   kt                         (4.9)
                                             Substituting Eq. 4.5 into Eqs. 4.2 to 4.4 yields the retardant expressions shown next.
                                             For retardant first-order progression:

                                                                 y   L   (L   y)(1   nk 0 t)  1>n            (4.10)
                                             For retardant, geometric progression:

                                                                  ln(y>y )   (1>n) ln(1   nk t)
                                                                                       0
                                                                       0
                                         or
                                                                     y   y (1   nk 0 t)  1>n                 (4.11)
                                                                          0
   155   156   157   158   159   160   161   162   163   164   165