Page 175 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 175

1656_C003.fm  Page 155  Monday, May 23, 2005  5:42 PM





                       Elastic-Plastic Fracture  Mechanics                                         155


                       zone was chosen so that the stresses at the tip would be finite. Thus

                                                          a       πσ 
                                                       k ≡  =  cos                             (A3.6)
                                                          a       σ YS 
                                                           1

                       When Equation (A3.6) is substituted into Equation (A3.5) and Equation (A3.3) is superimposed,
                       the first term in Equation (A3.5) cancel with Equation (A3.3), which leads to

                                                        2σ    k  z  2  a −  2  
                                                     Z =   YS       1                          (A3.7)
                                                          π    z  1 − k  2   


                       Integrating Equation (A3.7) gives

                                                         2σ
                                                      Z     YS  z =  ω  −  a [  ω  ]             (A3.8)
                                                           π    1    2

                       where

                                                                   a 1  2
                                                               1−
                                                            − 1    a  
                                                     ω = cot
                                                       1
                                                                 1  −
                                                                 k 2  1
                       and

                                                                z  2  − a  2
                                                             − 1     1
                                                      ω = cot
                                                        2        1− k  2

                          On the crack plane, y = 0 and the displacement in the y direction (Equation (A3.2)) reduces to

                                                              2
                                                         u =  E  Im Z                            (A3.9)
                                                          y

                       for plane stress. Solving for the imaginary part of Equation (A3.8) gives

                                           4σ            a 1  2  z −  2     k  a  2  z −  2   
                                       u =   YS  a  coth −    1  2   −  zcoth  −1  1   1  2   
                                        y
                                            π
                                             E 
                                                       a 1  1 − k       z  1 − k    
                       for |z| ≤ a . Setting z = a leads to
                               1

                                                             8 σ a    1
                                                     δ =  y  = 2u  πE  YS  ln   k             (A3.10)


                       which is identical to Equation (3.5).
   170   171   172   173   174   175   176   177   178   179   180