Page 74 - From Smart Grid to Internet of Energy
P. 74
60 From smart grid to internet of energy
[8] CEN-CENELEC-ETSI, Smart Grid Coordination Group Smart Grid Reference Architecture,
CENELEC, 2012.
[9] NIST Framework, NIST Framework and Roadmap for Smart Grid Interoperability Standards,
Release 1.0, 2010.
[10] The GridWise Architecture Council, Smart Grid Interoperability Maturity Model Beta Ver-
sion, US Department of Energy, 2011. https://www.gridwiseac.org/pdfs/imm/sg_imm_beta_
final_12_01_2011.pdf.
[11] C. D€ anekas, C. Neureiter, S. Rohjans, M. Uslar, D. Engel, Towards a model-driven-architecture
process for smart grid projects. in: P. Benghozi, D. Krob, A. Lonjon, H. Panetto (Eds.), Digital
Enterprise & Design Management, Springer International Publishing, Cham, 2014, pp. 47–58,
https://doi.org/10.1007/978-3-319-04313-5_5.
[12] IEEE Standards Committee, IEEE Guide for Smart Grid Interoperability of Energy Technology
and Information Technology Operation with the Electric Power System (EPS), End-Use
Applications and Loads, Institute of Electrical and Electronics Engineers, New York, NY,
2011. http://ieeexplore.ieee.org/servlet/opac?punumber¼6018237. Accessed 5 September 2017.
[13] R.H. Khan, J.Y. Khan, A comprehensive review of the application characteristics and traffic
requirements of a smart grid communications network. Comput. Netw. 57 (2013) 825–845,
https://doi.org/10.1016/j.comnet.2012.11.002.
[14] B.M. Buchholz, Z. Styczynski, Smart Grids–Fundamentals and Technologies in Electricity
Networks. Springer, Berlin, Heidelberg, 2014. https://doi.org/10.1007/978-3-642-45120-1.
[15] S. Mirsaeidi, X. Dong, S. Shi, B. Wang, AC and DC microgrids: a review on protection issues
and approaches, J. Electr. Eng. Technol. 12 (2017) 2089–2098.
[16] F. Blaabjerg, Y. Yang, D. Yang, X. Wang, Distributed power-generation systems and protec-
tion. Proc. IEEE 105 (2017) 1311–1331, https://doi.org/10.1109/JPROC.2017.2696878.
[17] T. Adefarati, R.C. Bansal, Integration of renewable distributed generators into the distribution
system: a review. IET Renew. Power Gener. 10 (2016) 873–884, https://doi.org/10.1049/iet-
rpg.2015.0378.
[18] F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchro-
nization for distributed power generation systems. IEEE Trans. Ind. Electron. 53 (2006)
1398–1409, https://doi.org/10.1109/TIE.2006.881997.
[19] A. Hooshyar, R. Iravani, Microgrid protection. Proc. IEEE 105 (2017) 1332–1353, https://doi.
org/10.1109/JPROC.2017.2669342.
[20] I. Colak, E. Kabalci, G. Fulli, S. Lazarou, A survey on the contributions of power electronics
to smart grid systems. Renew. Sustain. Energy Rev. 47 (2015) 562–579, https://doi.org/
10.1016/j.rser.2015.03.031.
[21] A. Kaur, J. Kaushal, P. Basak, A review on microgrid central controller. Renew. Sustain.
Energy Rev. 55 (2016) 338–345, https://doi.org/10.1016/j.rser.2015.10.141.
[22] J. Stephens, E.J. Wilson, T.R. Peterson, Smart Grid (R)Evolution: Electric Power Struggles.
Cambridge University Press, New York, 2015. https://doi.org/10.1017/CBO9781107239029.
[23] E. Kabalci, Emerging smart metering trends and integration at MV-LV level, in: Smart Grid
Workshop Certif. Program ISGWCP Int., IEEE, 2016, pp. 1–9.
[24] J.A. Momoh, Smart Grid: Fundamentals of Design and Analysis, Wiley, Hoboken, NJ, 2012.
[25] K.M. Muttaqi, A. Esmaeel Nezhad, J. Aghaei, V. Ganapathy, Control issues of distribution
system automation in smart grids. Renew. Sustain. Energy Rev. 37 (2014) 386–396, https://
doi.org/10.1016/j.rser.2014.05.020.
[26] N.S. Nafi, K. Ahmed, M.A. Gregory, M. Datta, A survey of smart grid architectures, applica-
tions, benefits and standardization. J. Netw. Comput. Appl. 76 (2016) 23–36, https://doi.org/
10.1016/j.jnca.2016.10.003.